The Reinforcement Learning "Agent"
Why reinforcement learning?

Programming an agent to drive a car or fly a helicopter is very hard!

Can an agent learn to drive or fly through positive/negative rewards?

Why reinforcement learning?

Can an agent learn to win at board games through rewards?

Win = large positive reward, Lose = negative
Learn evaluation function for different board positions?
Play games against itself?
Why reinforcement learning?

Humans and animals learn through rewards
- Reinforcement learning as a model of brain function?

Pavlov’s dog
Training: Bell ⇒ Food
After: Bell ⇒ Salivate

Toy Example: Agent in a Maze

States = Maze locations (1,1), (1,2),...
Actions = Move forward, left, right, back
Rewards = +10 at (3,4), -10 at (2,4)
-1 at others (cost of moving)
Actions might be noisy

- An action may not always succeed
 E.g. 0.9 probability of moving forward, 0.1 probability divided equally among other neighboring locations

- Characterized by transition probabilities:
 \(P(\text{next state} \mid \text{current state}, \text{action}) \)

Goal: Learn a “Policy”

Policy = for each state, what is the best action that maximizes my expected reward?
Goal: Learn a “Policy”

The Optimal Policy

A central problem in all these cases is learning to predict future reward
How do we do it?

Can we use supervised learning??
Predicting Delayed Rewards

- Time: $0 \leq t \leq T$ with input $u(t)$ and reward $r(t)$ (possibly 0) at each time step t

- Key Idea: Make the output $v(t)$ of supervised learner predict total expected future reward starting from time t

\[v(t) \approx \left\langle \sum_{\tau=0}^{T-t} r(t + \tau) \right\rangle \]

$\left\langle \right\rangle$ denotes average

Learning to Predict Delayed Rewards

- Use a set of modifiable weights $w(\tau)$ and predict based on all past inputs $u(t)$:

\[v(t) = \sum_{\tau=0}^{t} w(\tau)u(t - \tau) \quad \text{(Linear neural network)} \]

- Would like to find $w(\tau)$ that minimize:

\[\left(\sum_{\tau=0}^{T-t} r(t + \tau) - v(t) \right)^2 \quad \text{(Can we minimize this using gradient descent and delta rule?)} \]

Yes, BUT…not yet available are future rewards
Temporal Difference (TD) Learning

• **Key Idea:** Rewrite squared error to get rid of future terms:

\[
\left(\sum_{\tau=0}^{T-1} r(t+\tau) - v(t) \right)^2 = \left(r(t) + \sum_{\tau=0}^{T-1} r(t+1+\tau) - v(t) \right)^2 \\
\approx (r(t) + v(t+1) - v(t))^2
\]

Temporal Difference (TD) Learning

• **TD Learning:**

 For each time step t, do:

 For all $\tau (0 \leq \tau \leq t)$, do:

 \[
 v(t) = \sum_{\tau=0}^{t} w(\tau) u(t-\tau)
 \]

 \[
 w(\tau) \rightarrow w(\tau) + \varepsilon \left[r(t) + v(t+1) - v(t) \right] u(t-\tau)
 \]

 Expected future reward \quad Prediction
Temporal Difference Learning in the Brain?

Activity of a Dopaminergic cell in Ventral Tegmental Area

Reward Prediction error \[r(t) + v(t+1) - v(t) \]

Before Training

After Training

Selecting Actions when Reward is Delayed

Can we learn the optimal policy for this maze?

States: A, B, or C

Possible actions at any state: Left (L) or Right (R)

If you randomly choose to go L or R (random “policy”), what is the value \(v \) of each state?
Policy Evaluation

For random policy:

\[
v(B) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 5 = 2.5
\]

\[
v(C) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1
\]

\[
v(A) = \frac{1}{2} \cdot v(B) + \frac{1}{2} \cdot v(C) = 1.75
\]

(Location, action) \rightarrow new location

\((u,a) \rightarrow u'\)

Use output \(v(u) = w(u)\)

\[w(u) \rightarrow w(u) + \varepsilon [r_a(u) + v(u') - v(u)]\]

Maze Value Learning for Random Policy

Once I know the values, I can pick the action that leads to the higher valued state!
Selecting Actions based on Values

Values act as surrogate immediate rewards ⇒ Locally optimal choice leads to globally optimal policy

Related to Dynamic Programming

Q learning

Simple method for action selection based on action values (or Q values) $Q(u, a)$ where u is a state and a is an action

1. Let u be the current state. Select an action a according to:
 \[P(a) = \frac{\exp(\beta Q(u, a))}{\sum_{a'} \exp(\beta Q(u, a'))} \]

2. Execute a and record new state u' and reward r. Update Q:
 \[Q(u, a) \rightarrow Q(u, a) + \varepsilon (r + \max_{a'} Q(u', a') - Q(u, a)) \]

3. Repeat until an end state is reached
Reinforcement Learning Applications

Example: Flying a helicopter via reinforcement learning (videos)
(work of Andrew Ng, Stanford)

http://ai.stanford.edu/~ang/