Learning to Drive

How would you use a neural network to drive?
Example Network

Where will the training inputs come from?

Get steering angle from a human driver

Training Output: \(\mathbf{d} = (d_1, d_2, \ldots, d_{30}) \)

Get current camera image

Training Input \(\mathbf{u} = (u_1, u_2, \ldots, u_{960}) \) = image pixels
You are given training input-output pairs \((u, d)\).

Example Network

Idea

Start with random weights \(W, w\).

Given input \(u\), network produces output \(v\).

Find \(W\) and \(w\) that minimize total squared output error over all output units (labeled \(i\)):

\[
E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2
\]
Backpropagation: Output Weights

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

Learning rule for hidden-output weights \(W \):

\[W_{ji} \rightarrow W_{ji} - \varepsilon \frac{dE}{dW_{ji}} \quad \text{(gradient descent)} \]

\[\frac{dE}{dW_{ji}} = -(d_i - v_i) g'(\sum_j W_{ji}x_j)x_j \quad \text{(delta rule)} \]

Backpropagation: Hidden Weights

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

Learning rule for input-hidden weights \(w \):

\[w_{kj} \rightarrow w_{kj} - \varepsilon \frac{dE}{dw_{kj}} \quad \text{But:} \quad \frac{dE}{dw_{kj}} = \frac{dE}{dx_j} \cdot \frac{dx_j}{dw_{kj}} \quad \text{(chain rule)} \]

\[\frac{dE}{dw_{kj}} = - \sum_{m,i} (d_i^m - v_i^m) g'(\sum_j W_{ji}x_j^m)W_{ji} \cdot g'(\sum_k w_k u_k^m)u_k^m \]
Learning to Drive using Backprop

One of the learned "road features" w_i

ALVINN (Autonomous Land Vehicle in a Neural Network)

Trained using human driver + camera images

After learning:
- Drove up to 70 mph on highway
- Up to 22 miles without intervention
- Drove cross-country largely autonomously

(Pomerleau, 1992)
Other Demos

• Function Approximation:
 http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
• Pattern Recognition
 http://www-cse.uta.edu/%7Ecook/ai1/lectures/applets/hnn/JRec.html
• Image Compression
 http://neuron.eng.wayne.edu/bpImageCompression9PLUS/bp9PLUS.html
• Backpropagation for Control: Ball Balancing
 http://neuron.eng.wayne.edu/bpBallBalancing/ball5.html

Demos: Pole Balancing and Backing up a Truck
(by Keith Grochow, CSE 599, 2001)

Neural network learns to balance a pole on a cart
System:
 4 state variables: \(x_{\text{cart}}, v_{\text{cart}}, \theta_{\text{pole}}, v_{\text{pole}}\)
 1 input: Force on cart
Backprop Network:
 Input: State variables
 Output: New force on cart

NN learns to back a truck into a loading dock
System (Nyugen and Widrow, 1989):
 State variables: \(x_{\text{cab}}, y_{\text{cab}}, \theta_{\text{cab}}\)
 1 input: new \(\theta_{\text{steering}}\)
Backprop Network:
 Input: State variables
 Output: Steering angle \(\theta_{\text{steering}}\)
Human drivers don’t usually get exact supervisory signals (commands for muscles) for learning to drive!

Must learn by trial-and-error
Might get “rewards and punishments” along the way

Enter...Reinforcement Learning

The Reinforcement Learning “Agent”

Agent

Environment

State \(u_t \)
Reward \(r_t \)
Action \(a_t \)
Example: Rat in a Maze

States = Maze locations (1,1), (1,2), ...
Actions = Move forward, left, right, back
Rewards = +10 at (3,4), -10 at (2,4)
-1 at others (cost of moving)

Actions might be noisy

• Executing “Forward” action may not succeed
 E.g. 0.9 probability of moving forward, 0.1
 probability of remaining in current location

• Characterized by transition probabilities:
P(next state | current state, action)
Goal: Learn a “Policy”

Policy = for each state, what is the best action that maximizes my expected reward?

The Optimal Policy
Reinforcement Learning

• How can an agent learn behaviors when it doesn’t have a teacher to tell it how to perform?
 The agent has a task to perform
 It takes some actions in the world
 At some later point, it gets feedback telling it how well it did on performing the task
 The agent performs the same task over and over again

• This problem is called reinforcement learning:
 The agent gets positive reinforcement for tasks done well
 The agent gets negative reinforcement for tasks done poorly

Reinforcement Learning (cont.)

• The goal is to get the agent to act in the world so as to maximize its rewards

• The agent has to figure out what it did that made it get the reward/punishment
 This is known as the credit assignment problem

• Reinforcement learning approaches can be used to train computers to do many tasks
 backgammon and chess playing
 job shop scheduling
 controlling robot limbs
Next Time

• How to learn based on rewards
 Predicting delayed rewards (TD learning)
 Learning policies
 Q-learning