Recall: FOL Definitions

- **Constants**: George, Monkey2, etc.
 - Name a specific object.
- **Variables**: X, Y.
 - Refer to an object without naming it.
- **Functions**: banana-of, grade-of, etc.
 - Mapping from objects to objects.
- **Terms**: George, grade-of(stdnt1)
 - Refer to objects
- **Relations**: Curious, PokesInTheEyes, etc.
 - State relationships between objects.
- **Atomic Sentences**: PokesInTheEyes(Moe, Curly)
 - Can be true or false
 - Correspond to propositional symbols P, Q
More Definitions

• **Logical connectives**: and, or, not, ⇒, ⇔

• **Quantifiers**:
 - ∀ For all (Universal quantifier)
 - ∃ There exists (Existential quantifier)

• **Examples**
 - Monkeys are curious
 ∀m: Monkey(m) ⇒ Curious(m)

 - There is a curious monkey
 ∃m: Monkey(m) ∧ Curious(m)

Nested Quantifiers:
Order matters!

∀x∃y P(x,y) ≠ ∃y∀xP(x,y)

• **Examples**
 - Every monkey has a tail
 ∀m∃t has(m,t)

 - Every monkey shares a tail!
 ∃t∀m has(m,t)

 - Everybody loves somebody vs. Someone is loved by everyone
 ∀x∃y loves(x, y) vs. ∃y∀x loves(x, y)
Semantics

- **Semantics** = what the arrangement of symbols means in the world
- Propositional logic
 - Basic elements are **variables**
 - (refer to facts about the world)
 - Possible worlds: mappings from variables to T/F
- First-order logic
 - Basic elements are **terms**
 - (refer to objects)
 - **Interpretations**: mappings from terms to real-world elements.

Example: A World of Kings and Legs

- **Syntactic elements:**
 - **Constants:** Richard John
 - **Functions:** LeftLeg(p)
 - **Relations:** On(x,y) King(p)
Interpretation I

- Interpretations map syntactic tokens to model elements

Constants: Richard, John
Functions: LeftLeg(p)
Relations: On(x, y), King(p)

Interpretation II

Constants: Richard, John
Functions: LeftLeg(p)
Relations: On(x, y), King(p)
How Many Interpretations?

• **Two constants** (and 5 objects in world)
 Richard, John (R, J, crown, RL, JL)
 \[5^2 = 25\] object mappings

• **One unary relation**
 \(\text{King}(x)\)
 Infinite number of values for \(x\) infinite mappings
 Even if we restricted \(x\) to: R, J, crown, RL, JL:
 \[2^5 = 32\] unary truth mappings

• **Two binary relations**
 \(\text{Leg}(x, y); \text{On}(x, y)\)
 Infinite. But even restricting \(x, y\) to five objects
 still yields \(2^{25}\) mappings *for each* binary relation

Satisfiability, Validity, & Entailment

• **S is valid** if it is true in all interpretations

• **S is satisfiable** if it is true in some interp

• **S is unsatisfiable** if it is false all interps

\[\vdash\]

• **S1 entails S2** if
 For all interps where \(S1\) is true,
 \(S2\) is also true
Propositional Logic vs. First Order

<table>
<thead>
<tr>
<th>Ontology</th>
<th>Facts (P, Q, …)</th>
<th>Objects, Properties, Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Atomic sentences, Connectives</td>
<td>Variables & quantification, Sentences have structure: terms father-of(mother-of(X))</td>
</tr>
<tr>
<td>Semantics</td>
<td>Truth Tables</td>
<td>Interpretations, (Much more complicated)</td>
</tr>
<tr>
<td>Inference Algorithm</td>
<td>DPLL, WalkSAT Fast in practice</td>
<td>Unification, Forward, Backward chaining, Prolog, theorem proving</td>
</tr>
<tr>
<td>Complexity</td>
<td>NP-Complete</td>
<td>Semi-decidable</td>
</tr>
</tbody>
</table>

First-Order Wumpus World

- **Objects**
 - Squares, wumpuses, agents, gold, pits, stinkiness, breezes
- **Relations**
 - Square topology (adjacency), Pits/breezes, Wumpus/stinkiness
Wumpus World: Squares

- Each square as an object:
 - Square\textsubscript{1,1}, Square\textsubscript{1,2}, ..., Square\textsubscript{3,4}, Square\textsubscript{4,4}
- Square topology relations?
 - Adjacent(Square\textsubscript{1,1}, Square\textsubscript{2,1})
 - Adjacent(Square\textsubscript{3,4}, Square\textsubscript{4,4})
- **Better:** Squares as lists:
 - [1, 1], [1, 2], ..., [4, 4]
- **Square topology relations:**
 - \(\forall x, y, a, b: \text{Adjacent}([x, y], [a, b]) \in \{[x+1, y], [x-1, y], [x, y+1], [x, y-1]\}\)

Wumpus World: Pits

- Each pit as an object:
 - Pit\textsubscript{1,1}, Pit\textsubscript{1,2}, ..., Pit\textsubscript{3,4}, Pit\textsubscript{4,4}
- **Problem?**
 - Not all squares have pits
- **List only the pits we have?**
 - Pit\textsubscript{3,1}, Pit\textsubscript{3,3}, Pit\textsubscript{4,4}
- **Problem?**
 - No reason to distinguish pits (same properties)
- **Better:** pit as unary predicate
 - Pit(x)
 - Pit([3,1]) \land Pit([3,3]) \land Pit([4,4]) will be true
Wumpus World: Breezes

• Represent breezes like pits, as unary predicates:
 Breezy(x)

• “Squares next to pits are breezy”:
\[
\forall x, y, a, b:\
Pit([x, y]) \land Adjacent([x, y], [a, b]) \Rightarrow Breezy([a, b])
\]

Wumpus World: Wumpuses

• Wumpus as object:
 Wumpus

• Wumpus home as unary predicate:
 WumpusIn(x)

• Better: Wumpus’s home as a function:
 Home(Wumpus) references the wumpus’s home square.
FOL Reasoning: Outline

- Basics of FOL reasoning
- Classes of FOL reasoning methods
 - Forward & Backward Chaining
 - Resolution
 - Compilation to SAT

Basics: Universal Instantiation

- Universally quantified sentence:
 \[\forall x : \text{Monkey}(x) \Rightarrow \text{Curious}(x) \]

- Intuitively, \(x \) can be anything:
 - \(\text{Monkey}(\text{George}) \Rightarrow \text{Curious}(\text{George}) \)
 - \(\text{Monkey}(473\text{Student1}) \Rightarrow \text{Curious}(473\text{Student1}) \)
 - \(\text{Monkey}(\text{DadOf(George)}) \Rightarrow \text{Curious}(\text{DadOf(George)}) \)

- Formally:

 \[
 \begin{array}{c|c|c|c}
 \forall x & S & \forall x & \text{Monkey}(x) \\
 \text{Subst}\{\{x/p\}, S\} & \text{Monkey}(\text{George}) & \text{Curious}(\text{George}) \\
 \end{array}
 \]

 \(x \) is replaced with \(p \) in \(S \),
 and the quantifier removed

 \(x \) is replaced with \(\text{George} \) in \(S \),
 and the quantifier removed
Basics: Existential Instantiation

- **Existentially quantified sentence:**
 \[\exists x: \text{Monkey}(x) \land \neg \text{Curious}(x) \]

- **Intuitively, \(x \) must name something. But what?**

 \[\text{Monkey}(\text{George}) \land \neg \text{Curious}(\text{George}) \]
 No! \(S \) might not be true for \text{George}!

- **Use a \text{Skolem Constant}:**

 \[\text{Monkey}(\text{K}) \land \neg \text{Curious}(\text{K}) \]
 ...where \(\text{K} \) is a \textbf{completely new symbol} (stands for the monkey for which the statement is true)

- **Formally:**
 \[
 \exists x \quad S \\
 Subst([x/K], S) \\
 \text{K is called a Skolem constant}
 \]

Basics: Generalized Skolemization

- **What if our existential variable is nested?**

 \[\forall x \exists y: \text{Monkey}(x) \Rightarrow \text{HasTail}(x, y) \]
 \[\forall x: \text{Monkey}(x) \Rightarrow \text{HasTail}(x, \text{K_Tail}) \]

- **Existential variables can be replaced by \text{Skolem functions}**

 Argd to function are all surrounding \(\forall \) vars

 \[\forall x: \text{Monkey}(x) \Rightarrow \text{HasTail}(x, \text{f}(x)) \]
 "tail-of" function
Next Time

• **Reasoning with FOL**
 - Unification
 - Chaining
 - Resolution