CSE 473
Chapter 8

First-Order Logic

© CSE AT faculty

Last Time:
Efficient propositional inference

Two families of efficient algorithms for
propositional inference based on mode/ checking:

Complete backtracking search algorithms
DPLL algorithm (Davis, Putham, Logemann, Loveland)
Similar to TT enumeration but with heuristics
See lecture slides from last class

Incomplete local search algorithms
Val kSAT algorithm for testing satisfiability

Why Satisfiability?

Can't get
- satisfaction

Why Satisfiability?

- Recall: KB Eaiff KBU-a is unsatisfiable

* Thus, algorithms for satisfiability can be
used for inference (entailment)

* More generally, showing a sentence is
satisfiable (the SAT problem) is NP-
complete
i.e., Finding a fast algorithm for SAT
automatically yields fast algorithms for
hundreds of difficult (NP-complete)
problems

Satisfiability Examples

E.g. 2-CNF sentences (2 literals per clause):

(-AO-B)O(AOB)O(A O-B)
Satisfiable?
Yes (e.g., A = true, B = false)

(-AO-B)O(AOB)O(AO-B)O(-A O B)
Satisfiable?
No

The Wl kSAT algorithm

* Local search algorithm

Incomplete: may not always find a satisfying
assignment even if one exists

 Evaluation function?

= Number of unsatisfied clauses
WalkSAT tries to minimize this function

*+ Balance between greediness and randomness

The WAl kSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model+ a random assignment of true/ false to the symbols in clauses

if model satisfies clauses then return model

clause < a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause ma}imizes the number of\satisfied clauses

return failure / \

A Y

-
Greed Randomness

Hard Satisfiability Problems

* Consider random 3-CNF sentences. e.qg.,
-BOEB)OJ(EO-DOB)O(BOE O-C)

m = number of clauses
n = number of symbols

Hard instances of SAT seem to cluster near
m/n = 4.3 (critical point)

Hard Satisfiability Problems

1 F 1 ;

08 JL]

Pr(satisfiable)
o o
= o

ettt

o
[
-+
1

o
T

4 5 6 7 8

Clause/symbol ratio m/n

o
—
Mo E
[#%]

Hard Satisfiability Problems

1800 DPLL + ﬁ
600 | WalkSAT HT ;
1400
v 1200 | M
g |
2 1000 | i
= ||
800 | I|
600 | [
400 |I ’5*:
- X b e
|I M ” %,
200 #K
X
e L

=]

0 1 2 3 4 5 6 1 8

Clause/symbol ratio m/n

Median runtime for 100 satisfiable random 3-CNF
sentences, n=50

10

What about me?

Putting it all fogether:
Logical Wumpus Agents

A wumpus-world agent using propositional logic:

“P1,1
-W 11
Forx=1,2,3,4andy=1,2, 3,4, add (with
appropriate boundary conditions):
BX,Y = (PX,Y+1 O Px,y-l 0 Px+1,y u Px-l,y)
SX,Y = (W x,y+l O Wx,y-l 0 Wx+1,y 0 Wx-l,y)
Wl,l DWI,Z 0 DW4’4
-W 11 O-W 1,2
-W 11 O-W 13

= 64 distinct proposition symbols, 155 sentences!

12

function PL-WuUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench, breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
z, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty

update z y orientation, visited based on action
if stench then TELL(KB, S, ;) else TELL(KB, - S)

if breeze then TELL(KB, B, ;) else TELL(KB, -~ B,)
if glitter then action + grab
else if plan is nonempty then action «— Popr(plan)
else| if for some fringe square [i,j], ASK(KB, (- Pi; A - W;;)) is true or

for some fringe square [15], ASK(KB, (P, ;v W;;)) is false then do
plan < A*-GRAPH-SEARCH(ROUTE-PB([z.y]. orientation, i), visited))
action + PoP(plan)
else action + a randomly chosen move
return action

13

Limitations of propositional logic

+ KB contains "physics" sentences for every single
square

- For every time step fand every location [xy], we
need to add to the KB:

Ls, O FacingRight * O Forward* = L,};

* Rapid proliferation of sentences

14

W hat we'd like is a way to talk
about objects and groups of
objects, and to define

relationships between them.

Use: First-order logic
(aka "predicate logic")

Propositional vs. First-Order

Propositional logic
Facts: p,q,-r, =Py;, - W, etc.
(pOq)v(-rvqaop)

First-order logic

Objects: George, Monkey2, Raj, 473Studentl, etc.

Relations:
Curious(George), Curious(473Studentl), ...
Smarter(473Studentl, Monkey?2)
Smarter(Monkey2, Raj)
Stooges(Larry, Moe, Curly)
PokesInTheEyes(Moe, Curly)
PokesInTheEyes(473Studentl, Raj)

16

FOL Definitions

Constants. George, Monkey?2, etc.
Name a specific object.
Variables: X, Y.
Refer to an object without naming it.
Functions. banana-of, grade-of, etc.
Mapping from objects to objects.
Terms: banana-of(George), grade-of(stdntl)
Refer to objects
Relations. Curious, PokesInTheEyes, etc.
State relationships between objects.
Atomic Sentences. PokesInTheEyes(Moe, Curly)
Can be true or false
Correspond to propositional symbols P, Q

17

More Definitions
Logical connectives: and, or, not, =, =

Quantifiers:
O Forall (Universal quantifier)
0 There exists (Existential quantifier)
Examples

George is a monkey and he is curious
Monkey(George) [Curious(George)

Monkeys are curious

Om: Monkey(m) — Curious(m)
There is a curious monkey

On: Monkey(m) I Curious(m)

18

Quantifier / Connective

Interaction

M(x) == “x is a monkey"

1. Ox: M(x) OC(x) C(x) == "x is curious

“Everything is a curious monkey"

2. Ox: M(x) =C(x)

“All monkeys are curious”

3. Ix: M(x) OC(x)

"There exists a curious monkey"
4. Ix: M(x) = C(x)

"There exists an object that is e/ther a curious
monkey, or not a monkey at all”

19

Nested Quantifiers:
Order matters!

Ox Oy P(x,y) # Oy OxP(x.y)

« Examples
Every monkey has a tail 5 Every monkey shares a taill

Om Ot has(m,f) | OfOm has(m,?

Try:

Everybody loves somebody vs. Someone is loved by everyone

20

10

Next Time

* FOL for the Wumpus
+ Reasoning in FOL

21

1

