Ensembles

• An ensemble is a set of classifiers whose combined results give the final decision.

- test feature vector
 - classifier 1
 - classifier 2
 - classifier 3
 - super classifier
 - result
Model Ensembles

- **Basic idea:**
 Instead of learning one model,
 Learn several and combine them

- Typically improves accuracy, often by a lot

- **Many methods:**
 - Bagging
 - Boosting
 - ECOC (error-correcting output coding)
 - Stacking
 - Etc.

*A model is the learned decision rule. It can be as simple as a hyperplane in n-space (ie. a line in 2D or plane in 3D) or in the form of a decision tree or other modern classifier.
Majority Vote for Several Linear Models
Bagging

- Generate “bootstrap” replicates of training set by sampling with replacement
- Learn one model on each replicate
- Combine by uniform voting
Boosting

- Maintain vector of weights for examples
- Initialize with uniform weights
- Loop:
 - Apply learner to weighted examples (or sample)
 - Increase weights of misclassified examples
- Combine models by weighted voting
Idea of Boosting
1. Set all E weights to 1, and learn H1.
2. Repeat m times: increase the weights of misclassified Es, and learn H2,…Hm.
3. H1..Hm have “weighted majority” vote when classifying each test
Weight(H) = accuracy of H on the training data
ADABOost

• ADABOost *boosts the accuracy* of the original learning algorithm.

• If the original learning algorithm does slightly better than 50% accuracy, ADABOost with a large enough number of classifiers is guaranteed to classify the training data perfectly.
ADABoost Weight Updating

for j = 1 to N do /* go through training samples */
 if h[m](xj) <> yj then error <- error + wj

for j = 1 to N do
 if h[m](xj) = yj then w[j] <- w[j] * error/(1-error)
Sample Application: Insect Recognition

Using circular regions of interest selected by an interest operator, train a classifier to recognize the different classes of insects.
Boosting Comparison

- **ADTree classifier only** *(alternating decision tree)*

 - Correctly Classified Instances: 268 (70.1571 %)
 - Incorrectly Classified Instances: 114 (29.8429 %)
 - Mean absolute error: 0.3855
 - Relative absolute error: 77.2229 %

<table>
<thead>
<tr>
<th>Classified as -></th>
<th>Hesperperla</th>
<th>Doroneuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Hesperperlas</td>
<td>167</td>
<td>28</td>
</tr>
<tr>
<td>Real Doroneuria</td>
<td>51</td>
<td>136</td>
</tr>
</tbody>
</table>
Boosting Comparison

AdaboostM1 with ADTree classifier

- Correctly Classified Instances 303 79.3194 %
- Incorrectly Classified Instances 79 20.6806 %
- Mean absolute error 0.2277
- Relative absolute error 45.6144 %

<table>
<thead>
<tr>
<th>Classified as -></th>
<th>Hesperperla</th>
<th>Doroneuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Hesperperlas</td>
<td>167</td>
<td>28</td>
</tr>
<tr>
<td>Real Doroneuria</td>
<td>51</td>
<td>136</td>
</tr>
</tbody>
</table>
Boosting Comparison

- **RepTree classifier only** *(reduced error pruning)*

 - Correctly Classified Instances 294 75.3846 %
 - Incorrectly Classified Instances 96 24.6154 %
 - Mean absolute error 0.3012
 - Relative absolute error 60.606 %

<table>
<thead>
<tr>
<th>Classified as -></th>
<th>Hesperperla</th>
<th>Doroneuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Hesperperlas</td>
<td>169</td>
<td>41</td>
</tr>
<tr>
<td>Real Doroneuria</td>
<td>55</td>
<td>125</td>
</tr>
</tbody>
</table>
Boosting Comparison

AdaboostM1 with RepTree classifier

- Correctly Classified Instances: 324, 83.0769%
- Incorrectly Classified Instances: 66, 16.9231%
- Mean absolute error: 0.1978
- Relative absolute error: 39.7848%

Real
Hesperperlas: 180
Doroneuria: 30

Real
Hesperperla: 36
Doroneuria: 144
References

Stacking

- Apply multiple base learners
 (e.g.: decision trees, naive Bayes, neural nets)
- Meta-learner: Inputs = Base learner predictions
- Training by leave-one-out cross-validation:
 Meta-L. inputs = Predictions on left-out examples
Yu-Yu Chou’s Hierarchical Classifiers

- Developed for pap smear analysis in which the categories were normal, abnormal (cancer), and artifact plus subclasses of each.

- More than 300 attributes per feature vector and little or no knowledge of what they were.

- Large amount of training data making classifier construction slow or impossible.
Training
Classification
Results

• Our classifier was able to beat the handcrafted decision tree classifier that had taken Neopath years to develop.

• It was tested successfully on another pap smear data set and a forest cover data set.

• It was tested against bagging and boosting. It was better at detecting abnormal pap smears than both, and not as good at classifying normal ones as normal. It was slightly higher than both in overall classification rate.
Bayesian Learning

- **Bayes’ Rule** provides a way to calculate probability of a hypothesis based on
 - its prior probability
 - the probability of observing the data, given that hypothesis
 - the observed data (feature vector)
Bayes’ Rule

\[P(h | X) = \frac{P(X | h) \cdot P(h)}{P(X)} \]

- \(h \) is the hypothesis (such as the class).
- \(X \) is the feature vector to be classified.
- \(P(X | h) \) is the prior probability that this feature vector occurs, given that \(h \) is true.
- \(P(h) \) is the prior probability of hypothesis \(h \).
- \(P(X) = \) the prior probability of the feature vector \(X \).
- These priors are usually calculated from frequencies in the training data set.

Often assumed constant and left out.
Example

• Suppose we want to know the probability of class 1 for feature vector [0,1,0].

• \[P(1 \mid [0,1,0]) = \frac{P([0,1,0] \mid 1) \cdot P(1)}{P([0,1,0])} \]

\[= (0.25) \cdot (0.5) / (.125) \]

\[= 1.0 \]

Of course the training set would be much bigger and for real data could include multiple instances of a given feature vector.
Suppose H is a set of candidate hypotheses.

We would like to find the most probable h in H.

h_{MAP} is a MAP (maximum a posteriori) hypothesis if

$$h_{\text{MAP}} = \arg\max_{h \in H} P(h \mid X)$$

This just says to calculate $P(h \mid X)$ by Bayes’ rule for each possible class h and take the one that gets the highest score.
Cancer Test Example

Priors

\[
P(\text{cancer}) = .008 \\
P(\text{not cancer}) = .992 \\
P(\text{positive} \mid \text{cancer}) = .98 \\
P(\text{positive} \mid \text{not cancer}) = .03 \\
P(\text{negative} \mid \text{cancer}) = .02 \\
P(\text{negative} \mid \text{not cancer}) = .97
\]

New patient’s test comes back positive.

\[
P(\text{cancer} \mid \text{positive}) = \frac{P(\text{positive} \mid \text{cancer}) P(\text{cancer})}{P(\text{positive})} \\
= \frac{(.98) (.008)}{.0078 + .0298} = \frac{.0078}{.0376} = .21
\]

\[
P(\text{not cancer} \mid \text{positive}) = \frac{P(\text{positive} \mid \text{not cancer}) P(\text{not cancer})}{P(\text{positive})} \\
= \frac{(.03) (.992)}{.0078 + .0298} = \frac{.0298}{.0376} = .79
\]

\(h_{\text{MAP}}\) would say it’s not cancer. Depends strongly on priors!
Neural Net Learning

• Motivated by studies of the brain.

• A network of “artificial neurons” that learns a function.

• Doesn’t have clear decision rules like decision trees, but highly successful in many different applications. (e.g. face detection)

• Our hierarchical classifier used neural net classifiers as its components.