Provably Reliable QA Interfaces

http://cs.washington.edu/research/nli
Outline

I. Motivation
II. Reliable NLIs
III. Semantic tractability theory
IV. Implementation and experiments

Joint work with Ana-Maria Popescu, Alex Yates, Henry Kautz, and Dan Weld.
I. The Dominant UI Paradigm

- Menu buttons
- Hyperlinks
- Remote controls

Just Click it!
What to click?
Clicking breaks when..

- Click-challenged
 - Hands busy (driving).
 - Disabled.
- Limited Screen/keyboard Real estate
 - Cell phones, Microwave.
 - Ubiquitous computing..
- Complexity: SQL, shell scripts, menu hell.
Alternative Interface Paradigm

Speech + NL Understanding + Agents.

- “Where is Lord of the Rings showing?”
- “Defrost my corn.”
- “Delete all my old messages except the ones from Mom.”

Substantial Research Challenges!
State of the Art

- Commercial Speech Systems allow single word input.
- NLIDBs are unreliable (try Microsoft’s English Query).
- Nontrivial Autonomous Agents that respond to complex requests?!
II. Our Focus

- Not speech.
- Today:

 Reliable Natural Language Interfaces
Why Reliable?

Imagine “intelligent” interfaces that..
- Sometimes delete the wrong file.
- Can report incorrect flight times.

AI cannot be an excuse for incompetence (Norman, Schneiderman).
Some Common Objections

- Can’t the interface just confirm?
 - Yes, but will users attend?
- Speech understanding isn’t reliable.
 - That will gradually change.
 - Still need reliable language module.
- NL understanding is AI-complete!
III. Semantics is hard

- Syntactic, scopal ambiguity
- Word-sense ambiguity
- Time, events, liquids, holes,
- Shakespeare, Faulkner,
- Discourse, Pragmatics (speech acts)

We have to think about tractable classes!
Our Basic Hypothesis

There are common situations where Semantic Interpretation is tractable.

Sentence \rightarrow Target expression
Our Research Strategy

1. Identify easy-to-understand NL sentences.
3. Build Reliable NLIs.
4. Test NLIs experimentally.
Semantic Tractability

Easy to understand questions:

What are the Chinese restaurants in Seattle?
What Microsoft jobs require 2 years of experience?
What rivers run through Texas?

Semantically tractable questions are quite common: 77.5% - 97%
Semantic Intractability

Q: What is the second highest mountain in the US?
A: The word ‘second’ is unknown; please rephrase your query.

Q: What are the states bordering the states bordering the states bordering Montana?
A: huh?
Semantically Tractable Qs

Given a lexicon and a parse, \textbf{IF}

1. Q contains at least one \textit{wh}-word.
2. There exists a \textit{valid mapping} from Q to a set of database elements.
3. Q maps to a nonrecursive datalog clause.

\textbf{THEN} Q is \textbf{Semantically Tractable}.
Valid Mapping

Words (phrases) \rightarrow DB elements.

- **Lexical** constraints: Lord of the Rings.
- **Attachment** constraints:
 - What is the population of Atlanta?
- **Semantic** constraints:
 - Attributes need values: Cuisine \rightarrow Chinese.
 - Values can have implicit attributes.
Guarantees on ST Qs.

Precise = NLIDB implementation.

- Precise can detect ST Qs.
- Precise is *sound* for ST Qs.
- Precise is *complete* for ST Qs.

Will Precise capture “user intent?”
IV. Precise Implementation

- Lexicon extracted from DB + Wordnet.
- Parser plug in (Charniak 2000).
- Semantic constraints via graph match.
 - Word1 \rightarrow DB_EL1
 - Phrase2 \rightarrow DB_EL2
 \rightarrow DB_EL3

Match is computed via maxflow.
What are the Paul Mazursky films with Woody Allen?
PRECISE Architecture

Diagram showing the components of the PRECISE architecture:
- Database
- Lexicon
- Parser
- Tokenizer
- Matcher
- Query Generator
- Equivalence Checker

Connections between these components include:
- English Question
- SQL Query + Answer Set
Ambiguity meets Reliability

- Precise computes all valid mappings.
- Many possibilities \Rightarrow clarifying Q.

- What is the population of New York?
 - The population of New York City is...
 - The population of New York State is..
Experiments

Systems

Mooney, PRECISE, EnglishQuery

Datasets

Sets of NL questions labeled with SQL queries
 Geography (846) Jobs (577) Restaurants (224)

Measure

PRECISE’s performance
 Prevalence of semantically tractable questions
Fraction Answered

Recall = \frac{Q_{\text{answered}}}{Q}

Recall > 75\%
Error Rate

Precision \(= \frac{Q_{correct}}{Q_{answered}} \)

PRECISE made no mistakes on semantically tractable questions

Etzioni, 473
Exact – Case Study

- Exact is an NLI to the Panasonic KX-TC1040W telephone/answering machine.
- It uses Precise to formulate goals for the Blackbox planner (Kautz & Selman).
- The database model for the phone has 5 relations (between 2 and 11 attributes each) and the action set includes 37 actions.
Exact – Diagram

English Input

NLIA

DB

NLIDB

SQL statements

Translator

Goal

A

Planner

Plan

Devices
Conclusion

- Click-it UI paradigm is fraying.
- Need reliable NLIs.
- Semantically Tractable sentences.
 - Taxonomic Theory.
 - Precise and Exact implementations.
 - Promising, preliminary experiments.