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Walker is a 2D ball-and-stick construct that uses 
genetic programming with mutation, crossover, 
and elitism to evolve a program to move itself. 
The programming language governing its 
actions is capable of doing standard arithmetic 
operations as well as if-then operations and 
numerical comparisons.  We have made a few 
simplifications and assumptions in the relaxed 
physics model used to simulate Walker. Through 
our experiments we have discovered that the 
genetic programming technique is robust, though 
slow to converge to a solution at times. 
  
1 Introduction 
 
Genetic programming is a form of 
evolutionary computation that has computer 
programs as members of its population. 
 
We chose to use Genetic programming in 
attempting to make the construct in figure 
1.1 walk. The goal we set for the walker to 
achieve: move as far to the right of the 
starting position as possible, under the 
constraints set forth by the physics system. 
 

 
 
1.1 Rationale 
 
Why use Genetic programming in this 
situation? 
 
-Genetic programming is perhaps best suited 
to be used in problem areas where humans 
may find the input data difficult to correlate 

with desired output results. The nature of 
computer-generated programs means that 
the variation of things tried will be 
enormous when compared to the relatively 
narrow thought process most humans 
follow, and there will be chances to discover 
even the most obfuscated of relations 
between inputs and outputs. 
 
-Genetic programs search from a set of 
points, as opposed to many search methods 
which base their search on one point at a 
time -- local search. This makes it easier to 
break out of local minima (since it is highly 
improbable that the entire population is 
trapped within one local minimum) and the 
variety of points being searched at once 
increases the chance of finding a global 
optimum. 
 
-Genetic programs make no assumptions 
about the search space and only need an 
objective function value. There is no need 
for the function to be continuous or 
differentiable, and the only required 
information is a notion of fitness for each 
individual in a given generation. 
 
1.2 Problem definition 
 
The walker is situated in a world that is 
simply a ground, with no walls. It is free to 
attempt to move in any direction through the 
following two possible output operations: 
 
hop: We can imagine that a spring has been 
embedded in each of the feet of our walker. 
This operation, when applied to a given foot, 
causes an upward force, aligned with the leg 
connecting the foot with the body, to be 
applied to the walker. 
 

Figure 1.1:  The walker model.



specify-angle: The body of the walker can 
specify a change in the angle between its 
legs. If both feet are in the air, this affects 
both legs identically. Otherwise, if one foot 
is on the ground, this command is equivalent 
to rotating the other leg about the body. If 
both feet are on the ground, the angle 
between the legs is fixed in place and may 
not be changed. 
 
To determine what operations to use, and 
what amount to set the leg angle to, the 
walker may access the following inputs for 
each vertex (of which there are three -- the 
two feet and the body): 
 
X: This is the x-coordinate of the vertex. 
 
Y: This is the y-coordinate of the vertex. 
 
VX: This is the velocity in the x direction of 
the vertex. 
 
VY: This is the velocity in the y direction of 
the vertex. 
 
Time is quantized into frames for the 
purposes of this project. At each frame, the 
walker provides information which allows 
us to calculate what will happen in the next 
frame. 
  
1.3 Technical details 
 
We implemented Walker and all the other 
components of our project using Java 1.3.0, 
and the visualization part (see section 2.5) 
was done using Java Swing. 
 
2 Program Structure and Information 
 
2.1 Walker 
 
Each Walker contains a Vector of 3 Vertex 
objects and a Vector of 3 RealExpr objects. 
 
The Vertex objects each represent one of 
the vertices in our walker, and contain 
information about the location and velocities 
of that vertex. 
 

Each of the RealExpr objects are programs 
that evaluate to real values. There is one 
program assigned to every vertex, and these 
programs represent how the walker will 
decide to move. For the �body� vertex, 
output of the program controls the angle 
between the legs; for the �feet� vertices, a 
positive result is interpreted as a hop 
command.  The programming language they 
use is described in section 2.3. 
 
Each walker also contains a step function, 
which runs the program for each vertex, 
interprets the outputs, and applies the 
physics model to calculate the positions and 
velocities of all objects in the next time step. 
 
2.2 Physics Model 
 
The relaxed physics model we are using 
incorporates realistic models of gravity and 
momentum. However, some simplifications 
have been made to keep the system more 
manageable.  
 
Here are the main assumptions: 
 
-Only the body has non-negligible mass. 
Swinging the feet around will not cause the 
body to move. 
 
-Perfect friction. The feet do not slide. 
 
-The feet have built in springs which direct 
force along the legs towards the body. (This 
is necessary in order for the walkers to lift 
their legs and escape the ground�s fiction.) 
These springs are activated when the walker 
decides to use the hop output operation.   
 
-The feet may pass through each other. 
 
2.3 Programming Language 
 
We created a simple functional-style 
programming language for use with this 
system.  Although this language is not 
Turing-complete, it has a variety of 
available operators and inputs and is 
therefore capable of performing a reactive 
task like walking. 



 
There are three types in this language: real 
values, boolean values, and indices that are 
used to label the three vertices.  Here is a 
definition of the language: 
 
real ::=   real + real 
 | real � real 
 | real * real 
 | real / real 
 | getX(index) 
 | getY(index) 
 | getX_velocity(index) 
 | getY_velocity(index) 
 | if (bool) then real else real 
 | (constants between �1 and 1); 
 
bool ::=  real  < real 
 | real > real 
 | closeTo(real,  real) 
 | true 
 | false; 
  
index ::= 0 
 | 1 
 | 2; 
  
The operators getX and getY access the 
physical model of the walker to retrieve the 
X position and Y position, respectively, of 
the vertex specified by their argument.  
Similarly, getX_velocity and getY_velocity 
retrieve the velocities of that vertex. 
 
Programs and subprograms are generated 
using a random, recursive algorithm.  
Mutations can occur on any node,  and 
consist of regenerating that node.  To ensure 
type-safety, we only do crosses between 
real-valued nodes. 
 
 
2.4 Genetic Algorithm 
 
Here is pseudocode for the genetic algorithm 
that we used to evolve the walkers: 
Genetic Algorithm:

Initialize population

For maxGen generations {
Calculate fitness of every individual

If all individuals are all at base
fitness, re-initialize the population and
skip the rest of the loop

Replace the weakest individual with the
fittest individual from the last
population (if generation > 1)

Select the pairs of parents that will
make children for the following
generation

With probability crossProb perform
crossover on the pairs of parents

With probability mutationProb perform
mutation on the resulting offspring from
crossover

} 
 
Listing 2.4.1 pseudocode listing for genetic algorithm 
 
The following sections describe the various 
features of the algorithm. 
 
2.4.1 Mapping to a population 
 
The population at each generation is a series 
of walker objects. The genetic operations all 
work on the "chromosomes" of the walkers, 
which, in our case, have been designated to 
be the 3 programs associated with each 
walker as its genetic identifying sequence. 
 
2.4.2 Fitness 
 
As we are trying to get our walkers to walk, 
we have arbitrarily chosen a direction in 
which we would like them to move. The 
fitness metric we are using is the x-
coordinate reached by the body of the 
walker after t time steps (always a positive 
number -- if the fitness is less than 0 we set 
it to 0).  If at any time during those t steps 
the walker�s body touches the ground, it is 
considered �dead� and assigned a fitness 
of 0. 
 
2.4.3 Selection 
 
Selection is used to choose the parents for 
the population in the next generation. Two 
parents are selected for each child. The only 
restriction is that the same parent cannot be 



selected twice to create one child. We tried 
two methods: 
 
-Roulette Wheel selection. Each walker is 
selected probabilistically based on its fitness 
(normalized with respect to the sum fitness 
of the entire population). We select two 
parents for each child in the next generation. 
 
-"Weak" Tournament selection. For each 
child that we wish to create for the next 
generation, the population is arbitrarily 
divided into two segments, and we choose 
the fittest individual from each segment to 
become two parents of the child. 
 
2.4.4 Crossover 
 
Crossover is applied to each pair of parents 
to generate a child. 
 
Because it does not make sense to combine 
programs from different vertices (there is no 
reason why a "good" right foot program 
would enhance a body program), crossover 
is strictly limited to alterations between 
programs assigned to the same type of 
vertex. 
 
In each crossover process, a subtree of the 
second parent is randomly selected to 
replace a subtree of the first parent. This 
newly modified first parent becomes the 
child. This is essentially the standard form 
of single-point crossover for genetic 
programming. 
 
In our implementation of the genetic 
algorithm, there is a chance that crossover 
does not occur. In this case we simply assign 
the first parent to be the new child. 
 
2.4.5 Mutation 
 
After the new children for the next 
generation have been created through the 
crossover method, there is a chance that 
each of them may be mutated. Mutation in 

this case is a random regeneration of a 
program subtree. Each vertex's program is 
equally likely to be chosen for the mutation, 
though only 1 of the 3 may be mutated in 
one mutation operation. 
 
2.4.6 Elitism/Ultra-Elitism/Euthanasia 
 
Elitism, in standard genetic algorithm 
terminology, refers to always preserving the 
fittest individual of a generation. We have 
implemented a variation of this which is 
perhaps a slight improvement on the 
method. We save the fittest individual of the 
current generation before performing 
selection, crossover, and mutation. Then, in 
the next generation, after all fitness 
calculations of the new children, we replace 
the least-fit child with the previous fittest 
individual. If a more fit individual has been 
located, that is then preserved for insertion 
to the next generation, and we carry on with 
selection, crossover, and mutation as usual. 
 
Ultra-Elitism is a term we have created to 
mean the pre-emptive seeding of a newly 
initialized population with the best 
individual found from all previous runs of 
the genetic algorithm. This is basically a 
jump-start on evolution for all new runs. It 
may result in an evolutionary defect in that 
we are channeling the evolution in an overly 
restrictive way, (and not reaping the full 
benefits of the multiple-point search 
inherent in genetic algorithms) but there are 
clear advantages as well, such as immediate 
high fitnesses for many members of the 
population in generation 2 and onwards. 
 
In the event that all members of the 
population are lacking in fitness (this is the 
case when no individuals have been able to 
move from the starting point) we euthanize 
the entire population by re-initializing it for 
the next generation, as the members of the 
current generation clearly have nothing to 
offer the walkers in an evolutionary sense.  



 
2.5 Visualization 
 
The Java Swing application that we used for 
visualization of the walker shows the 
animated action of the walker object given 
to it. The current time step and the walker 
body's x location are displayed at the top of 
the screen. 
 
Whereas our fitness function used a fixed 
number of time steps, the visualization tool 
will run the walker as long as the program is 
not stopped. 
 
3 Results/Analysis 
 
In comparing heuristic algorithms, whether 
to themselves (running on different 
parameters) or to other algorithms, we need 
a good metric that still represents a notion of 
how "good" an algorithm with a certain set 
of parameters is, regardless of context of the 
problem. We decided to use the number of 
fitness evaluations as a metric. Fitness 
evaluations generally take up the most time 
in the main loop of any heuristic algorithm, 
and is a reasonable approximation of what is 
probably the best real-world metric, clock 
time. Thus, within these comparisons we 
maintained the same number of fitness 
evaluations. 
 
The tests below were based on averages of 5 
trials for each permutation of parameters 
tested. 
 
3.1 Parameter variation comparison 
 
As shown in figures 3.1.1 and 3.1.2, the 
effect of alterations in the mutation and 
crossover rates is not particularly 
pronounced. Even in the case of what might 
be called �outliers� (such as the 0.3 mutation 
runs or the 0.3 crossover runs, which had the 
unlikely occurrence of randomly induced 
introduction of a powerful archetype into the 
population) the average fitness still does not 
vary more than ± 30. 
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Figure 3.1.1: The effect of crossover rates. 

Figure 3.1.2: The effect of mutation rates. 
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Figure 3.2.1: The effect of the selection method. 
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This lack of deviation can be interpreted as a 
side-effect of certain characteristics in the 
search space for our problem. We postulate 
that the space is saturated with local minima 
that are very difficult to escape. The global 
minima are likely few and far between. 
 
The local minimum that is the most frequent 
occurrence within these trials is simply that 
of the archetype we have detailed in 3.4.2, 
where the walker falls over to the right. 
 
3.2 Selection variations 
 
Again, in figure 3.2.1, there is little 
noticeable difference between the two 
selection types. Perhaps in a search space 
with fewer (or shallower) local minima, the 
selection process would play a greater role 
in the advancement of a population�s fitness. 
 
3.3 Population/Generation tradeoff 
 
Figure 3.3.1 exhibits a manifestation of the 
outlier phenomenon mentioned above. We 
can see that the runs corresponding to 
[Population 100, Generations 250]  suddenly 
gain a very significant lead over the other 
runs at about 14000 fitness evaluations. 
 
This was in fact due to the sudden 
discovery/evolution of a powerful archetype, 
documented below as the �hopper�.  This 
one individual alone (fitness of around 1500, 
and increasing steadily) was enough to skew 
the results drastically for the rest of the runs 
in its permutation category. 
 
Other than that, alteration of population size 
and number of generations did not seem to 
greatly affect the average best fitness found 
by our genetic algorithm. 
 
3.4 Some Walker "Types" 
 
During our trial runs, these were the most 
prominent  archetypes that emerged. Note 
that the ones that actually were able to 
display some form of sustained locomotion 
were the windmill, the hopper, and the 
sprinter. 

 
3.4.0 Statue 
 
In this case the walker simply stands in 
place without even attempting to move a leg. 
 
3.4.1 Bird 
 
The �bird� walker jumps in place, 
repeatedly, flapping its legs while airborne 
in a manner reminiscent of wings. 
 
3.4.2 Leaning Tower of Pisa 
 
This breed of walker starts out by taking a 
step, and then leans over to a seemingly 
unstable angle and then remains still for the 
duration of the time allotted to the 
experiment. 
 
3.4.3 Windmill 
 
This walker spins its legs alternately, 
carrying itself forward with each step. 
Occasionally it pauses and performs full 
rotations with one leg. 
 
3.4.4 Hopper 
 
The �hopper� leaps to new positions with 
legs outstretched, and inches its rear leg 
towards the leading one in preparation for 
the next leap. 
 

Figure 3.3.1: The tradeoff between population size and 
generations for constant fitness evaluations. 
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Hopper is the most stable type we have 
found, which continue almost indefinitely. 
 
3.4.5 Sprinter 
 
This type of walker leans over near the start 
of its run, allowing its hops to provide it 
with more forward momentum than usual. 
The initial large leap is followed by many 
bursts of skipping followed by rapid steps. 
 
The sprinter is the fastest walker that has 
evolved (goes the farthest in the limited time 
frame we have chosen to use for our fitness 
evaluations), but is unstable at times due to 
being on the bleeding edge of walker 
evolution and enjoys driving itself to the 
limit, and into the dirt shortly thereafter. 
 
3.5 Outputs of the Genetic Programming 
 
As a result of many generations of mutation 
and crossover, the successful walkers often 
had very large, very obfuscated programs.  
(One Hopper-like solution had about 20,000 
nodes in its program.)  Even those programs 
which were short were generally very 
difficult to read and understand. 
 
4 Conclusion 
 
Genetic algorithms have proven to be a 
robust form of search.  The program was 
able to locate solutions even for problems 
such as this one, which has hard-to-escape 
local minima. 
 
Our program succeeded in finding the 
simple walking algorithm we had expected it 
to discover (the Windmill) as well as a few 
more powerful strategies that we had not 
thought of (Hopper, Sprinter). 
 
5 Future Study 
 
It may be interesting to look at the following 
issues as further research: 
 
-Different terrains for the physical model, 
including terrains with hills and slippery 
surfaces, or moving obstacles. 

-Walkers with more than three nodes, and 
the physics model to handle this.  (The 
physics model will need to be significantly 
more intricate in order to handle these more 
complicated models.) 
 
-A Turing-complete programming language, 
including subroutines and local variables. 
 
-The ability for the walkers to �hop� with 
varying strengths. 


