
Ministry of Silly Walks
(Evolutionary Walker)

CS672
Matt Harren and Allen Wang

Walker is a 2D ball-and-stick construct that uses
genetic programming with mutation, crossover,
and elitism to evolve a program to move itself.
The programming language governing its
actions is capable of doing standard arithmetic
operations as well as if-then operations and
numerical comparisons. We have made a few
simplifications and assumptions in the relaxed
physics model used to simulate Walker. Through
our experiments we have discovered that the
genetic programming technique is robust, though
slow to converge to a solution at times.

1 Introduction

Genetic programming is a form of
evolutionary computation that has computer
programs as members of its population.

We chose to use Genetic programming in
attempting to make the construct in figure
1.1 walk. The goal we set for the walker to
achieve: move as far to the right of the
starting position as possible, under the
constraints set forth by the physics system.

1.1 Rationale

Why use Genetic programming in this
situation?

-Genetic programming is perhaps best suited
to be used in problem areas where humans
may find the input data difficult to correlate

with desired output results. The nature of
computer-generated programs means that
the variation of things tried will be
enormous when compared to the relatively
narrow thought process most humans
follow, and there will be chances to discover
even the most obfuscated of relations
between inputs and outputs.

-Genetic programs search from a set of
points, as opposed to many search methods
which base their search on one point at a
time -- local search. This makes it easier to
break out of local minima (since it is highly
improbable that the entire population is
trapped within one local minimum) and the
variety of points being searched at once
increases the chance of finding a global
optimum.

-Genetic programs make no assumptions
about the search space and only need an
objective function value. There is no need
for the function to be continuous or
differentiable, and the only required
information is a notion of fitness for each
individual in a given generation.

1.2 Problem definition

The walker is situated in a world that is
simply a ground, with no walls. It is free to
attempt to move in any direction through the
following two possible output operations:

hop: We can imagine that a spring has been
embedded in each of the feet of our walker.
This operation, when applied to a given foot,
causes an upward force, aligned with the leg
connecting the foot with the body, to be
applied to the walker.

Figure 1.1: The walker model.

specify-angle: The body of the walker can
specify a change in the angle between its
legs. If both feet are in the air, this affects
both legs identically. Otherwise, if one foot
is on the ground, this command is equivalent
to rotating the other leg about the body. If
both feet are on the ground, the angle
between the legs is fixed in place and may
not be changed.

To determine what operations to use, and
what amount to set the leg angle to, the
walker may access the following inputs for
each vertex (of which there are three -- the
two feet and the body):

X: This is the x-coordinate of the vertex.

Y: This is the y-coordinate of the vertex.

VX: This is the velocity in the x direction of
the vertex.

VY: This is the velocity in the y direction of
the vertex.

Time is quantized into frames for the
purposes of this project. At each frame, the
walker provides information which allows
us to calculate what will happen in the next
frame.

1.3 Technical details

We implemented Walker and all the other
components of our project using Java 1.3.0,
and the visualization part (see section 2.5)
was done using Java Swing.

2 Program Structure and Information

2.1 Walker

Each Walker contains a Vector of 3 Vertex
objects and a Vector of 3 RealExpr objects.

The Vertex objects each represent one of
the vertices in our walker, and contain
information about the location and velocities
of that vertex.

Each of the RealExpr objects are programs
that evaluate to real values. There is one
program assigned to every vertex, and these
programs represent how the walker will
decide to move. For the �body� vertex,
output of the program controls the angle
between the legs; for the �feet� vertices, a
positive result is interpreted as a hop
command. The programming language they
use is described in section 2.3.

Each walker also contains a step function,
which runs the program for each vertex,
interprets the outputs, and applies the
physics model to calculate the positions and
velocities of all objects in the next time step.

2.2 Physics Model

The relaxed physics model we are using
incorporates realistic models of gravity and
momentum. However, some simplifications
have been made to keep the system more
manageable.

Here are the main assumptions:

-Only the body has non-negligible mass.
Swinging the feet around will not cause the
body to move.

-Perfect friction. The feet do not slide.

-The feet have built in springs which direct
force along the legs towards the body. (This
is necessary in order for the walkers to lift
their legs and escape the ground�s fiction.)
These springs are activated when the walker
decides to use the hop output operation.

-The feet may pass through each other.

2.3 Programming Language

We created a simple functional-style
programming language for use with this
system. Although this language is not
Turing-complete, it has a variety of
available operators and inputs and is
therefore capable of performing a reactive
task like walking.

There are three types in this language: real
values, boolean values, and indices that are
used to label the three vertices. Here is a
definition of the language:

real ::= real + real
 | real � real
 | real * real
 | real / real
 | getX(index)
 | getY(index)
 | getX_velocity(index)
 | getY_velocity(index)
 | if (bool) then real else real
 | (constants between �1 and 1);

bool ::= real < real
 | real > real
 | closeTo(real, real)
 | true
 | false;

index ::= 0
 | 1
 | 2;

The operators getX and getY access the
physical model of the walker to retrieve the
X position and Y position, respectively, of
the vertex specified by their argument.
Similarly, getX_velocity and getY_velocity
retrieve the velocities of that vertex.

Programs and subprograms are generated
using a random, recursive algorithm.
Mutations can occur on any node, and
consist of regenerating that node. To ensure
type-safety, we only do crosses between
real-valued nodes.

2.4 Genetic Algorithm

Here is pseudocode for the genetic algorithm
that we used to evolve the walkers:
Genetic Algorithm:

Initialize population

For maxGen generations {
Calculate fitness of every individual

If all individuals are all at base
fitness, re-initialize the population and
skip the rest of the loop

Replace the weakest individual with the
fittest individual from the last
population (if generation > 1)

Select the pairs of parents that will
make children for the following
generation

With probability crossProb perform
crossover on the pairs of parents

With probability mutationProb perform
mutation on the resulting offspring from
crossover

}

Listing 2.4.1 pseudocode listing for genetic algorithm

The following sections describe the various
features of the algorithm.

2.4.1 Mapping to a population

The population at each generation is a series
of walker objects. The genetic operations all
work on the "chromosomes" of the walkers,
which, in our case, have been designated to
be the 3 programs associated with each
walker as its genetic identifying sequence.

2.4.2 Fitness

As we are trying to get our walkers to walk,
we have arbitrarily chosen a direction in
which we would like them to move. The
fitness metric we are using is the x-
coordinate reached by the body of the
walker after t time steps (always a positive
number -- if the fitness is less than 0 we set
it to 0). If at any time during those t steps
the walker�s body touches the ground, it is
considered �dead� and assigned a fitness
of 0.

2.4.3 Selection

Selection is used to choose the parents for
the population in the next generation. Two
parents are selected for each child. The only
restriction is that the same parent cannot be

selected twice to create one child. We tried
two methods:

-Roulette Wheel selection. Each walker is
selected probabilistically based on its fitness
(normalized with respect to the sum fitness
of the entire population). We select two
parents for each child in the next generation.

-"Weak" Tournament selection. For each
child that we wish to create for the next
generation, the population is arbitrarily
divided into two segments, and we choose
the fittest individual from each segment to
become two parents of the child.

2.4.4 Crossover

Crossover is applied to each pair of parents
to generate a child.

Because it does not make sense to combine
programs from different vertices (there is no
reason why a "good" right foot program
would enhance a body program), crossover
is strictly limited to alterations between
programs assigned to the same type of
vertex.

In each crossover process, a subtree of the
second parent is randomly selected to
replace a subtree of the first parent. This
newly modified first parent becomes the
child. This is essentially the standard form
of single-point crossover for genetic
programming.

In our implementation of the genetic
algorithm, there is a chance that crossover
does not occur. In this case we simply assign
the first parent to be the new child.

2.4.5 Mutation

After the new children for the next
generation have been created through the
crossover method, there is a chance that
each of them may be mutated. Mutation in

this case is a random regeneration of a
program subtree. Each vertex's program is
equally likely to be chosen for the mutation,
though only 1 of the 3 may be mutated in
one mutation operation.

2.4.6 Elitism/Ultra-Elitism/Euthanasia

Elitism, in standard genetic algorithm
terminology, refers to always preserving the
fittest individual of a generation. We have
implemented a variation of this which is
perhaps a slight improvement on the
method. We save the fittest individual of the
current generation before performing
selection, crossover, and mutation. Then, in
the next generation, after all fitness
calculations of the new children, we replace
the least-fit child with the previous fittest
individual. If a more fit individual has been
located, that is then preserved for insertion
to the next generation, and we carry on with
selection, crossover, and mutation as usual.

Ultra-Elitism is a term we have created to
mean the pre-emptive seeding of a newly
initialized population with the best
individual found from all previous runs of
the genetic algorithm. This is basically a
jump-start on evolution for all new runs. It
may result in an evolutionary defect in that
we are channeling the evolution in an overly
restrictive way, (and not reaping the full
benefits of the multiple-point search
inherent in genetic algorithms) but there are
clear advantages as well, such as immediate
high fitnesses for many members of the
population in generation 2 and onwards.

In the event that all members of the
population are lacking in fitness (this is the
case when no individuals have been able to
move from the starting point) we euthanize
the entire population by re-initializing it for
the next generation, as the members of the
current generation clearly have nothing to
offer the walkers in an evolutionary sense.

2.5 Visualization

The Java Swing application that we used for
visualization of the walker shows the
animated action of the walker object given
to it. The current time step and the walker
body's x location are displayed at the top of
the screen.

Whereas our fitness function used a fixed
number of time steps, the visualization tool
will run the walker as long as the program is
not stopped.

3 Results/Analysis

In comparing heuristic algorithms, whether
to themselves (running on different
parameters) or to other algorithms, we need
a good metric that still represents a notion of
how "good" an algorithm with a certain set
of parameters is, regardless of context of the
problem. We decided to use the number of
fitness evaluations as a metric. Fitness
evaluations generally take up the most time
in the main loop of any heuristic algorithm,
and is a reasonable approximation of what is
probably the best real-world metric, clock
time. Thus, within these comparisons we
maintained the same number of fitness
evaluations.

The tests below were based on averages of 5
trials for each permutation of parameters
tested.

3.1 Parameter variation comparison

As shown in figures 3.1.1 and 3.1.2, the
effect of alterations in the mutation and
crossover rates is not particularly
pronounced. Even in the case of what might
be called �outliers� (such as the 0.3 mutation
runs or the 0.3 crossover runs, which had the
unlikely occurrence of randomly induced
introduction of a powerful archetype into the
population) the average fitness still does not
vary more than ± 30.

260

310

360

410

460

510

1 51 101 151 201 251 301 351 401 451

Generations

F
it
n
e
s
s

crossover 0.0

crossover 0.3

crossover 0.6

crossover 0.9

crossover 1.0

Figure 3.1.1: The effect of crossover rates.

Figure 3.1.2: The effect of mutation rates.

260

310

360

410

460

510

1 51 101 151 201 251 301 351 401 451

Generations

F
it
n
es
s

mutation 0

mutation 0.3

mutation 0.6

mutation 0.9

mutation 1.0

Figure 3.2.1: The effect of the selection method.

260

310

360

410

460

1 51 101 151 201 251 301 351 401 451

Generations

fi
tn
es
s

Roulette Wheel Selection

Weak Tournam ent Selection

This lack of deviation can be interpreted as a
side-effect of certain characteristics in the
search space for our problem. We postulate
that the space is saturated with local minima
that are very difficult to escape. The global
minima are likely few and far between.

The local minimum that is the most frequent
occurrence within these trials is simply that
of the archetype we have detailed in 3.4.2,
where the walker falls over to the right.

3.2 Selection variations

Again, in figure 3.2.1, there is little
noticeable difference between the two
selection types. Perhaps in a search space
with fewer (or shallower) local minima, the
selection process would play a greater role
in the advancement of a population�s fitness.

3.3 Population/Generation tradeoff

Figure 3.3.1 exhibits a manifestation of the
outlier phenomenon mentioned above. We
can see that the runs corresponding to
[Population 100, Generations 250] suddenly
gain a very significant lead over the other
runs at about 14000 fitness evaluations.

This was in fact due to the sudden
discovery/evolution of a powerful archetype,
documented below as the �hopper�. This
one individual alone (fitness of around 1500,
and increasing steadily) was enough to skew
the results drastically for the rest of the runs
in its permutation category.

Other than that, alteration of population size
and number of generations did not seem to
greatly affect the average best fitness found
by our genetic algorithm.

3.4 Some Walker "Types"

During our trial runs, these were the most
prominent archetypes that emerged. Note
that the ones that actually were able to
display some form of sustained locomotion
were the windmill, the hopper, and the
sprinter.

3.4.0 Statue

In this case the walker simply stands in
place without even attempting to move a leg.

3.4.1 Bird

The �bird� walker jumps in place,
repeatedly, flapping its legs while airborne
in a manner reminiscent of wings.

3.4.2 Leaning Tower of Pisa

This breed of walker starts out by taking a
step, and then leans over to a seemingly
unstable angle and then remains still for the
duration of the time allotted to the
experiment.

3.4.3 Windmill

This walker spins its legs alternately,
carrying itself forward with each step.
Occasionally it pauses and performs full
rotations with one leg.

3.4.4 Hopper

The �hopper� leaps to new positions with
legs outstretched, and inches its rear leg
towards the leading one in preparation for
the next leap.

Figure 3.3.1: The tradeoff between population size and
generations for constant fitness evaluations.

260

310

360

410

460

510

560

610

660

0 5000 10000 15000 20000 25000

Population: 10 Generations: 2500

Population: 50 Generations: 500

Population: 100 Generations: 250

Population: 250 Generations: 100

Population: 25 Generations: 1000

Hopper is the most stable type we have
found, which continue almost indefinitely.

3.4.5 Sprinter

This type of walker leans over near the start
of its run, allowing its hops to provide it
with more forward momentum than usual.
The initial large leap is followed by many
bursts of skipping followed by rapid steps.

The sprinter is the fastest walker that has
evolved (goes the farthest in the limited time
frame we have chosen to use for our fitness
evaluations), but is unstable at times due to
being on the bleeding edge of walker
evolution and enjoys driving itself to the
limit, and into the dirt shortly thereafter.

3.5 Outputs of the Genetic Programming

As a result of many generations of mutation
and crossover, the successful walkers often
had very large, very obfuscated programs.
(One Hopper-like solution had about 20,000
nodes in its program.) Even those programs
which were short were generally very
difficult to read and understand.

4 Conclusion

Genetic algorithms have proven to be a
robust form of search. The program was
able to locate solutions even for problems
such as this one, which has hard-to-escape
local minima.

Our program succeeded in finding the
simple walking algorithm we had expected it
to discover (the Windmill) as well as a few
more powerful strategies that we had not
thought of (Hopper, Sprinter).

5 Future Study

It may be interesting to look at the following
issues as further research:

-Different terrains for the physical model,
including terrains with hills and slippery
surfaces, or moving obstacles.

-Walkers with more than three nodes, and
the physics model to handle this. (The
physics model will need to be significantly
more intricate in order to handle these more
complicated models.)

-A Turing-complete programming language,
including subroutines and local variables.

-The ability for the walkers to �hop� with
varying strengths.

