Instance-Based Learning

Key idea: Just store all training examples \(\langle x_i, f(x_i) \rangle \)

Nearest neighbor:
- Given query instance \(x_q \), first locate nearest training example \(x_n \), then estimate \(\hat{f}(x_q) \leftarrow f(x_n) \)

k-Nearest neighbor:
- Given \(x_q \), take vote among its \(k \) nearest neighbors (if discrete-valued target function)
- Take mean of \(f \) values of \(k \) nearest neighbors (if real-valued)
 \[
 \hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^{k} f(x_i)
 \]

Advantages and Disadvantages

Advantages:
- Training is very fast
- Learn complex target functions easily
- Don’t lose information

Disadvantages:
- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes

Distance Measures

Numeric features:
- Euclidean, Manhattan, \(L^n \)-norm:
 \[
 L^n(x_1, x_2) = \sqrt{\sum_{i=1}^{\text{dim}} |x_{1,i} - x_{2,i}|^n}
 \]
 - Normalized by: range, std. deviation

Symbolic features:
- Hamming/overlap
- Value difference measure (VDM):
 \[
 \delta(val_i, val_j) = \sum_{h=1}^{\text{dim}} |P(c_h | val_i) - P(c_h | val_j)|^n
 \]

In general: Arbitrary, encode knowledge

Voronoi Diagram

\(S \): Training set

Voronoi cell of \(x \in S \):
All points closer to \(x \) than to any other instance in \(S \)

Region of class C:
Union of Voronoi cells of instances of \(C \) in \(S \)
Behavior in the Limit

$\epsilon^*(x)$: Error of optimal prediction

$\epsilon_{NN}(x)$: Error of nearest neighbor

Theorem: $\lim_{n \to \infty} \epsilon_{NN} \leq 2\epsilon^*$

Proof sketch (2-class case):

$$\epsilon_{NN} = p_+p_{NN}e^- + p_-p_{NN}e^+$$

$$= p_+(1 - p_{NN}e^-) + (1 - p_+)p_{NN}e^+$$

$$\lim_{n \to \infty} p_{NN}e^- = p_+,$$

$$\lim_{n \to \infty} p_{NN}e^+ = p_-$$

$$\lim_{n \to \infty} \epsilon_{NN} = p_+(1 - p_+) + (1 - p_+)p_+ = 2\epsilon^*(1 - \epsilon^*) \leq 2\epsilon^*$$

$\lim_{n \to \infty} (\text{Nearest neighbor}) = \text{Gibbs classifier}$

Theorem: $\lim_{n \to \infty, k \to \infty, k/n \to 0} \epsilon_k^{NN} = \epsilon^*$

Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily ...

$$f(x_q) = \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

where

$$w_i = \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Notice that now it makes sense to use *all* training examples instead of just k

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function

- **Curse of dimensionality:**
 - Nearest neighbor is easily misled when hi-dim X
 - Easy problems in low-dim are hard in hi-dim
 - Low-dim intuitions don’t apply in hi-dim

- **Examples:**
 - Normal distribution
 - Uniform distribution on hypercube
 - Points on hypergrid
 - Approximation of sphere by cube
 - Volume of hypersphere

Feature Selection

- **Filter approach:**
 - Pre-select features individually
 - E.g., by info gain

- **Wrapper approach:**
 - Run learner with different combinations of features
 - Forward selection
 - Backward elimination
 - Etc.

Forward Selection (FS)

- FS: Set of features used to describe examples
- Let SS = ∅
- Let BestEval = 0
- Repeat
 - Let BestF = None
 - For each feature F in FS and not in SS
 - Let $SS' = SS \cup \{F\}$
 - If Eval(SS') > BestEval
 - Then Let $BestF = F$
 - Let BestEval = Eval(SS')
 - If $BestF \neq None$
 - Then Let $SS = SS \cup \{BestF\}$
- Until $BestF = None$ or $SS = FS$
- Return SS

Backward Elimination (FS)

- FS: Set of features used to describe examples
- Let SS = FS
- Let BestEval = Eval(SS)
- Repeat
 - Let WorstF = None.
 - For each feature F in SS
 - Let $SS' = SS - \{F\}$
 - If Eval(SS') ≥ BestEval
 - Then Let $WorstF = F$
 - Let BestEval = Eval(SS')
 - If $WorstF \neq None$
 - Then Let $SS = SS - \{WorstF\}$
- Until $WorstF = None$ or $SS = ∅$
- Return SS
Feature Weighting

- Stretch jth axis by weight z_j, where z_1, \ldots, z_n chosen to minimize prediction error
- Use gradient descent to find weights z_1, \ldots, z_n
- Setting z_j to zero eliminates this dimension altogether

Reducing Computational Cost

- Efficient retrieval: k-D trees (only work in low dimensions)
- Efficient similarity comparison:
 - Use cheap approx. to weed out most instances
 - Use expensive measure on remainder
- Form prototypes
- Edited k-NN:
 Remove instances that don’t affect frontier

Edited k-Nearest Neighbor

Edited_k-NN(S)

S: Set of instances
For each instance x in S
 If x is correctly classified by $S - \{x\}$
 Remove x from S
Return S

Edited_k-NN(S)

S: Set of instances
$T = \emptyset$
For each instance x in S
 If x is not correctly classified by T
 Add x to T
Return T

Overfitting Avoidance

- Set k by cross-validation
- Form prototypes
- Remove noisy instances
 - E.g., remove x if all of x’s k nearest neighbors are of another class

Locally Weighted Regression

k-NN forms local approx. to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q?

- Fit linear function to k nearest neighbors
- Fit quadratic, …
- Produces “piecewise approximation” to f

Several choices of error to minimize:

- Squared error over k nearest neighbors
 \[E_1(x_q) = \sum_{x \in kNN(x_q)} (f(x) - \hat{f}(x))^2 \]
- Distance-weighted squared error over all neighbors
 \[E_2(x_q) = \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x)) \]
- …
Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but “eager” instead of “lazy”

Training Radial Basis Function Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$
- Scatter uniformly throughout instance space
- Use training instances (reflects distribution)
- Cluster instances and use centroids

Q2: How to train weights (assume here Gaussian K_u)
- First choose variance (and perhaps mean) for each K_u
 - E.g., use EM
- Then hold K_u fixed, and train linear output layer
 - Efficient methods to fit linear function
- Or use backpropagation

Case-Based Reasoning

Can apply instance-based learning even when $X \neq \mathbb{R}^n$
→ Need different “distance” measure

Case-based reasoning is instance-based learning applied to instances with symbolic logic descriptions

Widely used for answering help-desk queries
((user-complaint error53-on-shutdown)
 (cpu-model PentiumIII)
 (operating-system Windows2000)
 (network-connection Ethernet)
 (memory 128MB)
 (installed-applications Office PhotoShop VirusScan)
 (disk 100B)
 (likely-cause ??))

Case-Based Reasoning in CADET

CADET: Database of mechanical devices
- Each training example:
 (qualitative function, mechanical structure)
- New query: desired function
- Target value: mechanical structure for this function

Distance measure: match qualitative function descriptions

A stored case: T-junction pipe

<table>
<thead>
<tr>
<th>Structure:</th>
<th>Function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_1, T_1</td>
<td>$Q_1 \rightarrow Q_2$</td>
</tr>
<tr>
<td>Q_2, T_2</td>
<td>$T_1 \rightarrow T_2$</td>
</tr>
<tr>
<td>Q_3, T_3</td>
<td>T_3</td>
</tr>
</tbody>
</table>

A problem specification: Water faucet
Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Collaborative Filtering
(AKA Recommender Systems)

- **Problem:**
 Predict whether someone will like a Web page, newsgroup posting, movie, book, CD, etc.

- **Previous approach:**
 Look at content

- **Collaborative filtering:**
 - Look at what similar users liked
 - Similar users = Similar likes & dislikes

Fine Points

- Primitive version:
 \[
 \hat{R}_{ik} = \alpha \sum_{x_j \in N_i} W_{ij} R_{jk}
 \]

 \[\alpha = (\sum W_{ij})^{-1}\]

 \[N_i\] can be whole database, or only \(k \) nearest neighbors

 \(R_{jk} \) = Rating of user \(j \) on item \(k \)

 \(\overline{R}_j \) = Average of all of user \(j \)'s ratings

 Summation in Pearson coefficient is over all items rated by both users

 In principle, any prediction method can be used for collaborative filtering

Lazy vs. Eager Learning

Lazy:
Wait for query before generalizing
- \(k \)-nearest neighbor, case-based reasoning

Eager:
Generalize before seeing query
- ID3, FOIL, Naive Bayes, neural networks, ...

Does it matter?
- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same \(H \), lazy can represent more complex functions (e.g., consider \(H = \) linear functions)

Collaborative Filtering

- Represent each user by vector of ratings
- Two types:
 - Yes/No
 - Explicit ratings (e.g., \(0 - \ast \ast \ast \ast \ast \ast \))

- Predict rating:
 \[
 \hat{R}_{ik} = \overline{R}_i + \alpha \sum_{x_j \in N_i} W_{ij} (R_{jk} - \overline{R}_j)
 \]

- Similarity (Pearson coefficient):
 \[
 W_{ij} = \frac{\sum_h (R_{ih} - \overline{R}_i)(R_{jk} - \overline{R}_j)}{\sqrt{\sum_h (R_{ih} - \overline{R}_i)^2 \sum_h (R_{jk} - \overline{R}_j)^2}}
 \]

Example

<table>
<thead>
<tr>
<th></th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(R_5)</th>
<th>(R_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Chris</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Diana</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>
Instance-Based Learning: Summary

- k-Nearest Neighbor
- Other forms of IBL
- Collaborative filtering