Model Ensembles

Bagging

- Generate “bootstrap” replicates of training set by sampling with replacement
- Learn one model on each replicate
- Combine by uniform voting

Boosting

- Maintain vector of weights for examples
- Initialize with uniform weights
- Loop:
 - Apply learner to weighted examples (or sample)
 - Increase weights of misclassified examples
- Combine models by weighted voting

Model Ensembles

- **Basic idea:**
 Instead of learning one model, learn several and combine them
- **Typically improves accuracy, often by a lot**
- **Many methods:**
 - Bagging
 - Boosting
 - ECOC (error-correcting output coding)
 - Stacking
 - Etc.

ADABOOST (S, Learn, k)

- S: Training set $\{(x_1, y_1), \ldots, (x_m, y_m)\}$, $y_i \in Y$
- Learn: Learn$(S, \text{weights})$
- k: # Rounds
- For all i in S: $w_1(i) = 1/m$
- For $r = 1$ to k do
 - For all i: $p_r(i) = w_r(i) / \sum w_r(i)$
 - $h_r = \text{Learn}(S, p_r)$
 - $\epsilon_r = \sum p_r(i) \[h_r(i) \neq y_i \]$
 - If $\epsilon_r > 1/2$ then
 - $k = r - 1$
 - Exit
 - $\beta_r = \epsilon_r / (1 - \epsilon_r)$
 - For all i: $w_{r+1}(i) = w_r(i) \beta_r^{-1} \cdot [h_r(x_i) \neq y_i]$
- Output: $h(x) = \arg \max_y \sum_r \left(\log \frac{1}{\beta_r} \right) 1[h_r(x) = y]$
Error-Correcting Output Coding

- **Motivation:**
 Applying binary classifiers to multiclass problems
- **Train:** Repeat L times:
 - Form a binary problem by randomly assigning classes to “superclasses” 0 and 1
 - E.g.: A, B, D \rightarrow 0; C, E \rightarrow 1
 - Apply binary learner to binary problem
- **Test:**
 - Apply each classifier to test example, forming vector of predictions P
 - Predict class whose vector is closest to P (Hamming)

Model Ensembles: Summary

- Learn several models and combine them
- Bagging: Random resamples
- Boosting: Weighted resamples
- ECOC: Recode outputs
- Stacking: Multiple learners

Stacking

- Apply multiple base learners (e.g.: decision trees, naive Bayes, neural nets)
- Meta-learner: Inputs = Base learner predictions
- Training by leave-one-out cross-validation:
 Meta-L. inputs = Predictions on left-out examples