Inference in first-order logic

Chapter 9, Sections 1–4

Proofs

Sound inference: find α such that KB ⊨ α.
Proof process is a search, operators are inference rules.

E.g., Modus Ponens (MP)

\[α, α \Rightarrow β \quad \text{At}(\text{Joe}, \text{UCB}) \quad \text{At}(\text{Joe}, \text{UCB}) \Rightarrow \text{OK}(\text{Joe}) \]

\[β \quad \text{OK}(\text{Joe}) \]

E.g., And-Introduction (AI)

\[α, β \quad \text{OK}(\text{Joe}) \quad \text{CSMajor}(\text{Joe}) \]

\[α \land β \quad \text{OK}(\text{Joe}) \land \text{CSMajor}(\text{Joe}) \]

E.g., Universal Elimination (UE)

\[∀x α \quad ∀x \text{At}(x, \text{UCB}) \Rightarrow \text{OK}(x) \]

\[α[x/τ] \quad \text{At}(\text{Pat}, \text{UCB}) \Rightarrow \text{OK}(\text{Pat}) \]

τ must be a ground term (i.e., no variables)

Example proof

Bob is a buffalo

Pat is a pig

Buffaloes outrun pigs

Bob outruns Pat

1. Bufal(o)\{Bob\}
2. Pig\{Pat\}
3. ∀x, y Bufal(o)(x) ∧ Pig(y) ⇒ Faster(x, y)

<table>
<thead>
<tr>
<th>Al 1 & 2</th>
<th>4. Bufal(o){Bob} \land Pig{Pat}</th>
</tr>
</thead>
</table>

UE 3, \{x/\text{Bob}, y/\text{Pat}\}

5. Bufal(o)\{Bob\} \land Pig\{Pat\} ⇒ Faster(\text{Bob}, \text{Pat})
Search with primitive inference rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

MP 6 & 7 6. Faster(Bob, Pat)

Unification

A substitution σ unifies atomic sentences p and q if pσ = qσ

<table>
<thead>
<tr>
<th>p</th>
<th>Kown(John, x)</th>
<th>Kown(John, Jane)</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>Kown(John, x)</td>
<td>Kown(y, OJ)</td>
<td></td>
</tr>
<tr>
<td>Kown(x, x)</td>
<td>Kown(y, Mother(y))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Idea: Unify rule premises with known facts, apply unifier to conclusion
E.g., if we know q and Kown(John, x) ⇒ Likes(John, x)
then we conclude Likes(John, Jane)
Likes(John, OJ)
Likes(John, Mother(John))

Generalized Modus Ponens (GMP)

\[p_1', p_2', \ldots, p_n', (p_1 \land p_2 \land \ldots \land p_n \Rightarrow q) \Rightarrow q \sigma \]

where \(p_i' \sigma = p_i \sigma \) for all \(i \)

E.g., \(p_1' = \text{Faster}(Bob, Pat) \)
\(p_2' = \text{Faster}(Pat, Steve) \)
\(p_1 \land p_2 \Rightarrow q = \text{Faster}(x, y) \land \text{Faster}(y, z) \Rightarrow \text{Faster}(x, z) \)
\(\sigma = \{x/John, y/Pat, z/Steve\} \)
\(q \sigma = \text{Faster}(Bob, Steve) \)

GMP used with KB of definite clauses (exactly one positive literal):
either a single atomic sentence or
(conjunction of atomic sentences) ⇒ (atomic sentence)
All variables assumed universally quantified

Soundness of GMP

Need to show that
\[p_1', \ldots, p_n', (p_1 \land \ldots \land p_n \Rightarrow q) \Rightarrow q \sigma \]
provided that \(p_i' \sigma = p_i \sigma \) for all \(i \)

Lemma: For any definite clause \(p \), we have \(p \models p \sigma \) by UE
1. \((p_1 \land \ldots \land p_n \Rightarrow q) \models (p_1 \sigma \land \ldots \land p_n \sigma \Rightarrow q) \sigma \)
2. \(p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \Rightarrow p_1' \sigma \land \ldots \land p_n' \sigma \)
3. From 1 and 2, \(q \sigma \) follows by simple MP
Forward chaining

When a new fact \(p \) is added to the KB
for each rule such that \(p \) unifies with a premise
if the other premises are known
then add the conclusion to the KB and continue chaining

Forward chaining is data-driven
- e.g., inferring properties and categories from percepts

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in \([]\) = unification literal; \(\checkmark \) indicates rule firing

1. \(\text{Buffalo}(x) \land \text{Pig}(y) \Rightarrow \text{Faster}(x, y) \)
2. \(\text{Pig}(y) \land \text{Slug}(z) \Rightarrow \text{Faster}(y, z) \)
3. \(\text{Faster}(x, y) \land \text{Faster}(y, z) \Rightarrow \text{Faster}(x, z) \)
4. \(\text{Buffalo}(Bob) \land [3a, x] \)
5. \(\text{Pig}(Pat) \land [1b, \checkmark] \Rightarrow \checkmark \text{Faster}(Bob, Pat) \land [3a, x], [3b, x] \)

Backward chaining

When a query \(q \) is asked
- if a matching fact \(q' \) is known, return the unifier
 for each rule whose consequent \(q' \) matches \(q \)
 attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)

Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming, e.g., Prolog

Backward chaining example

1. \(\text{Pig}(y) \land \text{Slug}(z) \Rightarrow \text{Faster}(y, z) \)
2. \(\text{Slimy}(z) \land \text{Creeps}(z) \Rightarrow \text{Slug}(z) \)
3. \(\text{Pig}(Pat) \land [\{\}, y/Pat, z/\text{Steve}] \)
4. \(\text{Slimy}(\text{Steve}) \)
5. \(\text{Creeps}(\text{Steve}) \)

\(\text{Faster}(\text{Pat}, \text{Steve}) \)

\(\text{Pig}(\text{Pat}) \)

\(\text{Slug}(\text{Steve}) \)

\(\{\} \)

\(\{\} \)
