Logical agents

Chapter 6

Knowledge bases

<table>
<thead>
<tr>
<th>Inference engine</th>
<th>domain-independent algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge base</td>
<td>domain-specific content</td>
</tr>
</tbody>
</table>

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):

Tell it what it needs to know

Then it can ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

function KB-AGENT(precep) returns an action
 static: KB, a knowledge base
 i, an integer, initially 0, indicating then
 TELL(KB, MAKE-PERCEPT-SENTECNE(precep, i))
 or TELL(KB, MAKE-ASSERT-STATE(query, i))
 i: $i + 1$
 return action

The agent must be able to:

- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions

Wumpus World PAGE description

Percepts Breeze, Glitter, Smell

Actions Left turn, Right turn,
 Forward, Grab, Release, Shoot

Goals Get gold back to start
 without entering pit or wumpus square

Environment

\begin{itemize}
 \item Squares adjacent to wumpus are smelly
 \item Squares adjacent to pit are breezy
 \item Glitter if and only if gold is in the same square
 \item Shooting kills the wumpus if you are facing it
 \item Shooting uses up the only arrow
 \item Grabbing picks up the gold if in the same square
 \item Releasing drops the gold in the same square
\end{itemize}

Wumpus world characterization

Is the world deterministic??

Is the world fully accessible??

Is the world static??

Is the world discrete??
Wumpus world characterization

Is the world deterministic? Yes—outcomes exactly specified
Is the world fully accessible? No—only local perception
Is the world static? Yes—Wumpus and Pits do not move
Is the world discrete? Yes

Exploring a wumpus world

P?

P?

A
B

S

W

OK

OK

OK
Other tight spots

- Breeze in (1,2) and (2,1)
 \[\Rightarrow \text{no safe actions} \]

- Assuming pits uniformly distributed,
 (2,2) is most likely to have a pit

- Smell in (1,1)
 \[\Rightarrow \text{cannot move} \]

 - Can use a strategy of coercion:
 - Shoot straight ahead
 - Wumpus was there \(\Rightarrow \text{dead} \) \(\Rightarrow \text{safe} \)
 - Wumpus wasn't there \(\Rightarrow \text{safe} \)

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn.

- Syntax defines the sentences in the language.

- Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world.

E.g., the language of arithmetic:

- \(x + 2 \geq y \) is a sentence; \(x^2 + y > \) is not a sentence.
- \(x + 2 \geq y \) is true iff the number \(x + 2 \) is no less than the number \(y \).
- \(x + 2 \geq y \) is true in a world where \(x - 7, y - 1 \).
- \(x + 2 \geq y \) is false in a world where \(x - 0, y - 6 \).

<table>
<thead>
<tr>
<th>Language</th>
<th>Ontological Commitment</th>
<th>Epistemological Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-order logic</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal logic</td>
<td>facts, objects, relations, times</td>
<td>degree of belief 0...1</td>
</tr>
<tr>
<td>Probability theory</td>
<td>facts</td>
<td>degree of belief 0...1</td>
</tr>
<tr>
<td>Fuzzy logic</td>
<td>degree of truth</td>
<td>degree of belief 0...1</td>
</tr>
</tbody>
</table>

Types of logic

- Logics are characterized by what they commit to as "primitives".

- Epistemological commitment: what states of knowledge?
Entailment

$KB \models \alpha$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true.

E.g., the KB containing “the Giants won” and “the Reds won” entails “Either the Giants won or the Reds won”.

Inference

$KB \models \alpha$ can be derived from KB by procedure i

Soundness: i is sound if whenever $KB \models \alpha$, it is also true that $KB \models \alpha$.

Completeness: i is complete if whenever $KB \models \alpha$, it is also true that $KB \models \alpha$.

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1, P_2 etc are sentences.

If S is a sentence, $\neg S$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \land S_2$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \lor S_2$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \Rightarrow S_2$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \Leftrightarrow S_2$ is a sentence.

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol.

E.g. A B C

| True | True | False |

Rules for evaluating truth with respect to a model m:

$\neg S$ is true iff S is false.

$S_1 \land S_2$ is true iff S_1 is true and S_2 is true.

$S_1 \lor S_2$ is true iff S_1 is true or S_2 is true.

$i.e.,$ is true iff S_1 is true and S_2 is true.

$S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true.

Propositional inference: Enumeration method

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$.

Is it the case that $KB \models \alpha$?

Check all possible models—α must be true wherever KB is true.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$B \lor \neg C$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

We say m is a model of a sentence α if α is true in m.

$M(\alpha)$ is the set of all models of α.

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$.

E.g. $KB = $ Giants won and Reds won

$\alpha = $ Giants won.
Propositional inference: Solution

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A ∨ C</th>
<th>B ∨ ¬C</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Normal forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms.

Conjunctive Normal Form (CNF—universal)

- **conjunction** of **disjunctions** of **literals**
- **clauses**
- Example: \((A \lor B) \land (B \lor C) \lor \neg D\)

Disjunctive Normal Form (DNF—universal)

- **disjunction** of **conjunctions** of **literals**
- **terms**
- Example: \((A \land B) \lor (A \land \neg C) \lor (\neg B \land \neg D)\)

Horn Form (restricted)

- **conjunction** of Horn **clauses** (clauses with at most one positive literal)
- Example: \((A \land \neg B) \lor (B \land \neg C) \lor \neg D\)

Proof methods

- **Model checking**
 - truth table enumeration (sound and complete for propositional)
 - heuristic search in model space (sound but incomplete)
 - e.g., the GSAT algorithm (Ex. 6.15)
- **Application of inference rules**
 - **Legitimate (sound) generation of new sentences from old**
 - **Proof** = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search algorithm.

Summary

Logical agents apply inference to a knowledge base

- to derive new information and make decisions

Basic concepts of logic:

- **syntax:** formal structure of sentences
- **semantics:** truth of sentences wrt models
- **entailment:** necessary truth of one sentence given another
- **inference:** deriving sentences from other sentences
- **soundness:** derivations produce only entailed sentences
- **completeness:** derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Propositional logic suffices for some of these tasks

Truth table method is sound and complete for propositional logic