Constraint Satisfaction Problems

Chapter 3, Section 7 and Chapter 4, Section 4.4

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box"—any old data structure
that supports goal test, eval, successor

CSP:
state is defined by variables \(V \) with values from domain \(D \).
goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language:
Allows useful general-purpose algorithms with more power
than standard search algorithms

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables \(Q_1, Q_2, Q_3, Q_4 \)
Domains \(D_i = \{1, 2, 3, 4\} \)
Constraints
\(Q_i \neq Q_j \) (cannot be in same row)
\(|Q_i - Q_j| \neq |i - j| \) (or same diagonal)

Translate each constraint into set of allowable values for its variables
E.g., values for \((Q_1, Q_2) \) are \(\{1, 3\} \) \(\{1, 4\} \) \(\{2, 4\} \) \(\{3, 1\} \) \(\{4, 1\} \) \(\{4, 2\} \)

Example: Cryptarithmetic

Variables
\(D E M N O R S Y \)
\(S E N D + M O R E = M O N E Y \)

Domains
\(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)

Constraints
\(M \neq 0, S \neq 0 \) (universal constraints)
\(Y = D + E \) \(Y = D + E = 10 \), etc.
\(D \neq E, D \neq M, D \neq N \), etc.
Example: Map coloring

Color a map so that no adjacent countries have the same color

Variables:
Countries \(C \)

Domains:
\{Red, Blue, Green\}

Constraints:
\(C_1 \neq C_2, C_1 \neq C_3 \), etc.

Constraint graph:

Real-world CSPs

Assignment problems
- e.g., who teaches what class

Timetabling problems
- e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Applying standard search

Let's start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

Initial state: all variables unassigned

Operators: assign a value to an unassigned variable

Goal test: all variables assigned, no constraints violated

Notice that this is the same for all CSPs!

Implementation

CSP state keeps track of which variables have values so far

Each variable has a domain and a current value

```
{data types: CSP-STATE
  component: UNASSIGNED, a list of variables not yet assigned
  component: ASSIGNED, a list of variables that have values

data types: CSP-VAR
  component: NAME, for k/v pair
  component: DOMAIN, a list of possible values
  component: VALUE, current value (if any)
}
```

Constraints can be represented
- explicitly as sets of allowable values, or
- implicitly by a function that tests for satisfaction of the constraint

Complexity of the dumb approach

Max. depth of space \(m = ?? \)

Depth of solution state \(d = ?? \)

Search algorithm to use??

Branching factor \(b = ?? \)

This can be improved dramatically by noting the following:

1) Order of assignment is irrelevant, hence many paths are equivalent
2) Adding assignments cannot correct a violated constraint
Complexity of the dumb approach

Max. depth of space \(m = \frac{\text{number of variables}}{n} \)

Depth of solution state \(d = \frac{\text{all vars assigned}}{n} \)

Search algorithm to use? depth-first

Branching factor \(b = \frac{\text{sum of \(D \)}}{\text{top of tree}} \)

This can be improved dramatically by noting the following:

1. Order of assignment is irrelevant so many paths are equivalent
2. Adding assignments cannot correct a violated constraint

Backtracking search

Use depth-first search, but

1. Fix the order of assignment. \(\Rightarrow b = |D| \) (can be done in the \(\text{successors} \) function)
2. Check for constraint violations.

The constraint violation check can be implemented in two ways:

1. **Modify** \(\text{successors} \) to assign only values that are allowed, given the values already assigned.
2. **Check** constraints are satisfied before expanding a state.

Backtracking search is the basic uninformed algorithm for CSPs.

Can solve \(n \)-queens for \(n \approx 15 \)

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

Simplified map-coloring example:

<table>
<thead>
<tr>
<th>RED</th>
<th>BLUE</th>
<th>GREEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_1</td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can solve \(n \)-queens up to \(n \approx 30 \)
Heuristics for CSPs

More intelligent decisions on
which value to choose for each variable
which variable to assign next

Given \(C_1 = \text{Red}, C_2 = \text{Green} \), choose \(C_3 = ?? \).

Given \(C_1 = \text{Red}, C_2 = \text{Green} \), what next??

Can solve n-queens for \(n \approx 1000 \)

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work
"complete" states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators assign variable values

Variable selection: randomly select any conflicted variable

\textbf{min-conflicts} heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with \(h(n) = \text{total number of violated constraints} \)

Performance of \textbf{min-conflicts}

Given random initial state, can solve n-queens in almost constant time
for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]

Example: 4-Queens

States: 4 queens in 4 columns \(4^4 = 256 \) states

Operators: move queen in column

Goal test: no attacks

Evaluation: \(h(n) = \text{number of attacks} \)

\[h = 5 \quad \rightarrow \quad h = 2 \quad \rightarrow \quad h = 0 \]

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved
in \(O(|D|^k) \) time

Compare to general CSPs, where worst-case time is \(O(|D|^n) \)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and complexity of reasoning.
Algorithm for tree-structured CSPs

Basic step is called filtering.

\[\text{Filter}(V_i, V_j) \]

removes values of \(V_i \) that are inconsistent with ALL values of \(V_j \)

Filtering example:

\[
\begin{align*}
V_i & \quad | \quad V_j \\
\text{allowed pairs:} & \quad \rightarrow \quad \text{domain of } V_j \\
< 1, 1 > & \quad < 3, 2 > \quad < 3, 3 > \quad \text{remove 2 from}
\end{align*}
\]

Algorithm contd.

1) Order nodes breadth-first starting from any leaf:

2) For \(j = n \) to 1, apply \(\text{Filter}(V_i, V_j) \) where \(V_i \) is a parent of \(V_j \)

3) For \(j = 1 \) to \(n \), pick legal value for \(V_j \) given parent value

Summary

CSPs are a special kind of problem:

- states defined by values of a fixed set of variables
- goal test defined by constraints on variable values

Backtracking = depth-first search with

1) fixed variable order
2) only legal successors

Forward checking prevents assignments that guarantee later failure

Variable ordering and value selection heuristics help significantly

Iterative min-conflicts is usually effective in practice

Tree-structured CSPs can always be solved very efficiently