Homework #2: Solution

1. A and C are independent given B, so

\[
P(A|B, \neg C) = P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\neg A)P(\neg A)}
\]

Another way to solve the problem is,

\[
P(A|B, \neg C) = \frac{P(A, B, \neg C)}{P(B, \neg C)}
\]

\[
= \frac{P(A|\neg A)P(\neg A)P(B|A)P(\neg C|B)}{P(A|\neg A)P(\neg A)P(B|A)P(\neg C|B) + P(A|A)P(A)P(B|A)P(\neg C|B)}
\]

\[
= \frac{P(A)P(B|A)P(\neg C|B) + P(\neg A)P(\neg A)P(B|\neg A)P(\neg C|B)}{P(A)P(B|A)P(\neg C|B) + P(\neg A)P(\neg A)P(B|\neg A)}
\]

\[
= \frac{P(A)}{P(B)}
\]

2.(a)(c)

\[
\begin{array}{c|ccc}
\oplus & + & - & \ominus \\
\hline
\oplus & + & - & \ominus \\
\hline
\ominus & + & - & \ominus \\
\hline
\ominus & + & - & \ominus \\
\end{array}
\]

(b) The nearest-neighbor algorithm will predict for A a positive example, the 3-nearest-neighbor algorithm will predict it a negative example.

3. The information gain of any attribute can be computed by:

\[
Gain(S, A) = H(S) - \sum_v P(A = v) \cdot H(S|A = v)
\]
In perfect case, the attribute A can successfully classify the training set into class Red, Green, and Blue, where $H(S | A = v)$ in the above equation is equal to 0 for any v value. Thus, the maximum possible information gain of attribute A is,

$$\max(Gain(S, A)) = H(S) = \sum_{v \in \{Red, Green, Blue\}} -P(H = v)\log P(H = v) = 1.5$$

4. Step1: calculating the decision tree accuracy over the validation set of subtrees rooted at W, X, and Y respectively:

$$Au(T_W) = Au(A) \cdot P(W = w_1) + Au(D) \cdot P(W = w_2) = 0.4$$
$$Au(T_X) = Au(T_W) \cdot P(X = x_1) + Au(C) \cdot P(X = x_2) = 0.35$$
$$Au(T_Y) = Au(B) \cdot P(Y = y_1) + Au(T_X) \cdot P(Y = y_2) = 0.6875$$

Step2: calculating the increase of the accuracy over the validation set if the subtrees are removed respectively:

$$Inc(T_W) = Au(W) - Au(T_W) = -0.1$$
$$Inc(T_X) = Au(X) - Au(T_X) = 0.05$$
$$Inc(T_Y) = Au(Y) - Au(T_Y) = -0.1875$$

So remove the node X and the subtree rooted at it, and loop again from step 1. This time we only need to calculate the increase of the accuracy if node Y is removed:

$$Au(T_Y) = Au(B) \cdot P(Y = y_1) + Au(X) \cdot P(Y = y_2) = 0.7$$
$$Inc(T_Y) = Au(Y) - Au(T_Y) = -0.2 < 0$$

The pruning will be harmful, so the process stops. Subtree rooted at X is removed.