1. Consider the following events:

A = You receive a million dollars;

B = You receive a utility of 0.2;

C = You receive a utility of 0.7.

If you are indifferent between A and a lottery between B and C where your chances of winning B are 0.15 and your chances of winning C are 0.85, what is the utility of a million dollars to you?

2. Consider the following Bayesian network structure, where A, B, Cand D are boolean variables: a) Is A independent of D?

b) Is A independent of D given B?

c) Is A independent of D given C?

d) Suppose you are given the following set of training examples:

A	В	С	D
0	1	0	1
0	?	1	1
1	0	0	0
1	0	1	?
0	0	?	1

Show the sequence of filled-in values and parameters produced by the EM algorithm, assuming the parameters are initialized by ignoring missing values.

3. Representing the following boolean functions using:

- (1) decision trees;
- (2) neural networks: show the structure of the network and the weights on the edges.
 - (a) $A \wedge \neg B$
 - (b) $A \vee [B \wedge C]$
 - (c) A XOR B

4. Suppose we want to classify a given ball into one of these three classes: $\{H,M,L\}$, based on three attributes: the color of the ball($\{Y,R,P\}$), the size of the ball($\{L,S\}$), and the price of the ball($\{C1,C2,C3\}$). Build a decision tree to learn the classification, choosing the best attribute at each step according to information gain.

Price	Color	Size	Class
C1	Y	m L	M
C2	Y	S	H
C2	R	L	L
C3	R	S	M
C3	P	Γ	H
C1	P	S	H

- **5.** Consider the learning approaches we've learned in class, which might be the best in the following cases:
 - 1. there are 13 examples in the training set, each is a vector of six continuous value, the attributes are tight-connected;
 - 2. 1000-dimension instance space, the attribute values are independent given the classifications, and are normal distributed;
 - 3. training set of size 10000, the attributes are loosely connected.
- **6.** What is the "curse of dimensionality"? Explain two approaches to select "best" features. What is the asymptotic time complexity of them for nearest-neighbor as a function of the number of training anvalidation examples and the number of attributes?