Industrial-strength inference

Chapter 9.5-6, Chapters 8.1 and 10.2-3

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 9.5-6, Chapters 8.1 and 10.2-3

- ♦ Completeness
- ♦ Resolution
- ♦ Logic programming

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

450B.C. Stoics

Completeness in FOL

Procedure i is complete if and only if

$$KB \vdash_i \alpha$$
 whenever $KB \models \alpha$

Forward and backward chaining are complete for Horn KBs but incomplete for general first-order logic

E.g., from

 $PhD(x) \Rightarrow HighlyQualified(x)$ $\neg PhD(x) \Rightarrow EarlyEarnings(x)$ $HighlyQualified(x) \Rightarrow Rich(x)$ $EarlyEarnings(x) \Rightarrow Rich(x)$

should be able to infer Rich(Me), but FC/BC won't do it

Does a complete algorithm exist?

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 9.5-6, Chapters 8.1 and 10.2-3

A brief history of reasoning

Outline

322B.C.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	Cardano	<pre>probability theory (propositional logic + uncertainty)</pre>
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	\exists complete algorithm for FOL
1930	Herbrand	complete algorithm for FOL (reduce to propositional)
1931	Gödel	¬∃ complete algorithm for arithmetic
1960	Davis/Putnam	"practical" algorithm for propositional logic
1965	Robinson	"practical" algorithm for FOL—resolution

propositional logic, inference (maybe)

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 9.5-6, Chapter 8.1 and 10.2-3 4

Chapter 9.5-6, Chapters 8.1 and 10.2-3 6

Chapter 9.5-6, Chapters 8.1 and 10.2-3 2

Resolution

Entailment in first-order logic is only semidecidable:

can find a proof of α if $KB \models \alpha$ cannot always prove that $KB \not\models \alpha$

Cf. Halting Problem: proof procedure may be about to terminate with success or failure, or may go on for ever

Resolution is a <u>refutation</u> procedure:

AIMA Slides @Stuart Russell and Peter Norvig, 1998

to prove $KB \models \alpha$, show that $KB \land \neg \alpha$ is unsatisfiable

Resolution uses KB, $\neg \alpha$ in CNF (conjunction of clauses)

Resolution inference rule combines two clauses to make a new one:

Inference continues until an empty clause is derived (contradiction)

Resolution inference rule

Basic propositional version:

$$\frac{\alpha \vee \beta, \ \, \neg \beta \vee \gamma}{\alpha \vee \gamma} \qquad \text{or equivalently} \qquad \frac{\neg \alpha \ \Rightarrow \ \beta, \ \, \beta \ \Rightarrow \ \, \gamma}{\neg \alpha \ \Rightarrow \ \, \gamma}$$

Full first-order version:

$$\frac{p_1 \vee \ldots p_j \ldots \vee p_m,}{q_1 \vee \ldots q_k \ldots \vee q_n}$$
$$\frac{(p_1 \vee \ldots p_{j-1} \vee p_{j+1} \ldots p_m \vee q_1 \ldots q_{k-1} \vee q_{k+1} \ldots \vee q_n)\sigma}$$

where $p_j \sigma = \neg q_k \sigma$

For example,

$$\begin{split} \neg Rich(x) \lor Unhappy(x) \\ Rich(Me) \\ \hline Unhappy(Me) \end{split}$$

with
$$\sigma = \{x/Me\}$$

Conjunctive Normal Form

<u>Literal</u> = (possibly negated) atomic sentence, e.g., $\neg Rich(Me)$

<u>Clause</u> = disjunction of literals, e.g., $\neg Rich(Me) \lor Unhappy(Me)$

The KB is a conjunction of clauses

Any FOL KB can be converted to CNF as follows:

- 1. Replace $P \Rightarrow Q$ by $\neg P \lor Q$
- 2. Move \neg inwards, e.g., $\neg \forall x\, P$ becomes $\exists x\, \neg P$
- 3. Standardize variables apart, e.g., $\forall x \ P \lor \exists x \ Q$ becomes $\forall x \ P \lor \exists y \ Q$
- 4. Move quantifiers left in order, e.g., $\forall x \ P \lor \exists x \ Q$ becomes $\forall x \exists y \ P \lor Q$
- 5. Eliminate ∃ by Skolemization (next slide)
- 6. Drop universal quantifiers
- 7. Distribute \land over \lor , e.g., $(P \land Q) \lor R$ becomes $(P \lor Q) \land (P \lor R)$

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 9.5-6, Chapters 8.1 and 10.2-3 7

Skolemization

 $\exists x \ Rich(x)$ becomes Rich(G1) where G1 is a new "Skolem constant" $\exists k \ \frac{d}{dv}(k^y) = k^y$ becomes $\frac{d}{dv}(e^y) = e^y$

More tricky when \exists is inside \forall

E.g., "Everyone has a heart"

 $\forall x \ Person(x) \Rightarrow \exists y \ Heart(y) \land Has(x,y)$

ncorrect

 $\forall x \ Person(x) \Rightarrow Heart(H1) \land Has(x, H1)$

Correct

 $\forall x \ Person(x) \Rightarrow Heart(H(x)) \land Has(x,H(x))$ where H is a new symbol ("Skolem function")

Skolem function arguments: all enclosing universally quantified variables

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 9.5-6, Chapters 8.1 and 10.2-3 8

Resolution proof

To prove α :

- negate it
- convert to CNF
- add to CNF KB
- infer contradiction

E.g., to prove Rich(me), add $\neg Rich(me)$ to the CNF KB

- $\neg PhD(x) \lor HighlyQualified(x)$
- $PhD(x) \vee EarlyEarnings(x)$
- $\neg HighlyQualified(x) \lor Rich(x)$

 $\neg Early Earnings(x) \vee Rich(x)$

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 9.5-6, Chapters 8.1 and 10.2-3 9

Resolution proof

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 9.5-6, Chapters 8.1 and 10.2-3 10

Logic programming

Sound bite: computation as inference on logical KBs

Logic programmingOrdinary programming1. Identify problemIdentify problem2. Assemble informationAssemble information3. Tea breakFigure out solution4. Encode information in KBProgram solution

5. Encode problem instance as facts
 6. Ask queries
 7. Find false facts
 Encode problem instance as data
 Apply program to data
 Debug procedural errors

Should be easier to debug Capital(NewYork, US) than x := x + 2!

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques \Rightarrow 10 million LIPS

Program = set of clauses = head :- literal₁, ... literal_n.

Efficient unification by open poling

Efficient unification by open coding

Efficient retrieval of matching clauses by direct linking

 $Depth\mbox{-}first, \mbox{-}left\mbox{-}to\mbox{-}right \mbox{-}backward \mbox{-}chaining$

Built-in predicates for arithmetic etc., e.g., X is Y*Z+3 Closed-world assumption ("negation as failure")

e.g., not PhD(X) succeeds if PhD(X) fails

AIMA Sider @Suan Runelland Peter Norvig, 1998 Chapter 93-4, Chapter 81 and 10.2-5 11 AIMA Sider @Suan Runelland Peter Norvig, 1998 Chapter 93-4, Chapter 81 and 10.2-5 12

Prolog examples

```
Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each
Appending two lists to produce a third:
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
A=[1] B=[2]
```

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

A=[1,2] B=[]

Chapter 9.5-6, Chapters 8.1 and 10.2-3 13