Industrial-strength inference

CHAPTER 9.5-6, CHAPTERS 8.1 AND 10.2-3
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I Completeness in FOL [

Procedure ¢ is complete if and only if
KBt;a whenever KB Ea

Forward and backward chaining are complete for Horn KBs
but incomplete for general first-order logic

E.g., from

PhD(z) = HighlyQualified(z)
-PhD(z) = EarlyEarnings(z)
HighlyQualified(z) = Rich(z)
EarlyEarnings(z) = Rich(z)

should be able to infer Rich(Me), but FC/BC won’t do it

Does a complete algorithm exist?
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I Resolution |

Entailment in first-order logic is only semidecidable:

can find a proof of a if KB = «

cannot always prove that KB |~ «
Cf. Halting Problem: proof procedure may be about to terminate with
success or failure, or may go on for ever

Resolution is a refutation procedure:
to prove KB = «, show that KB A - is unsatisfiable

Resolution uses K B, - in CNF (conjunction of clauses)

Resolution inference rule combines two clauses to make a new one:

C, C,
Y

Inference continues until an empty clause is derived (contradiction)
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I Outline |

{ Completeness
¢ Resolution

& Logic programming
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I A brief history of reasoning [

450B.C. Stoics propositional logic, inference (maybe)

322B.C. Aristotle “syllogisms” (inference rules), quantifiers

1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)

1879 Frege first-order logic

1922 Wittgenstein  proof by truth tables

1930 Godel 3 complete algorithm for FOL

1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Godel —3 complete algorithm for arithmetic

1960 Davis/Putnam “practical” algorithm for propositional logic

1965 Robinson “practical” algorithm for FOL—resolution
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I Resolution inference rule [

Basic propositional version:
avﬁv “ﬂV’Y . _|O£:>,8, B:>’7
—_— or equivalently _
aVy o =y
Full first-order version:

pV...pj ...V Dy,
GV..o @ ..-V@n
MV piaVDPi1 PV @ GV Qg1 ---V Gn)O

where p;jo = o
For example,

= Rich(z) V Unhappy(z)
Rich(Me)
Unhappy(Me)

with o = {z/Me}
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I Conjunctive Normal Form [

Literal = (possibly negated) atomic sentence, e.g., ~Rich(Me)

Clause = disjunction of literals, e.g., “Rich(Me) V Unhappy(Me)

The KB is a conjunction of clauses

Any FOL KB can be converted to CNF as follows:

. Replace P = @ by -PVQ

Move — inwards, e.g., =Vx P becomes 3z ~P

. Standardize variables apart, e.g., Vo PV 3z Q becomes Vz PV Iy Q
Move quantifiers left in order, e.g., Vo PV 3z @) becomes Vady PV Q
. Eliminate 3 by Skolemization (next slide)

Drop universal quantifiers

. Distribute A over V, e.g., (PAQ)V R becomes (PV Q) A (PVR)

NoO oA WN R
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I Resolution proof [

To prove a:
— negate it
— convert to CNF
— add to CNF KB
- infer contradiction

E.g., to prove Rich(me), add = Rich(me) to the CNF KB

=PhD(z) V HighlyQuali fied(x)
PhD(z) V EarlyEarnings(z)
—HighlyQualified(x) V Rich(z)
—FEarlyEarnings(z) V Rich(z)
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I Logic programming [

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork,US) than z :=z + 2 |
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I Skolemization |

Jz Rich(x) becomes Rich(G1) where G1 is a new “Skolem constant”
Jk %(ky) = kY becomes %(ey) =eY
More tricky when 3 is inside V

E.g., “Everyone has a heart”
Y& Person(z) = 3y Heart(y) A Has(z,y)

Incorrect:
Va Person(x) = Heart(H1) A Has(z, H1)

Correct:
V& Person(x) = Heart(H(z)) A Has(z, H(x))
where H is a new symbol (“Skolem function”)

Skolem function arguments: all enclosing universally quantified variables
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I Resolution proof [

| = PhD(X) v HQ(X) | | —HQ(X) v Rich(¥) |

{}
|-| PhD(X) vRich(x)| | PhD() v ESX) |
{}
| Rich(®) v ES(¥) | |-|ES(x) vRich(x)|
{}
Rich(x)

I Prolog systems [

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques = 10 million LIPS

Program = set of clauses = head :- literal;, ... literal,.
Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption ( “negation as failure”)

e.g., not PhD(X) succeeds if PhD(X) fails
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I Prolog examples [

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each
Appending two lists to produce a third:

append ([1,Y,Y) .
append ([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) 7

answers: A=[] B=[1,2]
A=[1] B=[2]
A=[1,2] B=[]
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