Informed search algorithms

Chapter 4, Sections 1–2, 4

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4

Outline

- Best-first search
- A* search
- Heuristics
- ♦ Hill-climbing
- ♦ Simulated annealing

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 2

Review: General search

function General-Search (problem, Queuing-Fn) returns a solution, or failure $nodes \leftarrow M$ ake-Queue(Make-Node(Initial-State[problem])) loop do $\mathbf{if} \ nodes \ \mathrm{is} \ \mathrm{empty} \ \mathbf{then} \ \mathbf{return} \ \mathrm{failure}$ $node \leftarrow Remove-Front(nodes)$

 $nome \leftarrow \texttt{REMOVE-FROM I}(nomes) \\ \text{if $Goal-Fest[problem] applied to $State(node)$ succeeds $\textbf{then return} \ node \\ nodes \leftarrow \texttt{Queuing-Fn}(nodes, \texttt{Expand}(node, \texttt{Operators}[problem])) \\ \end{cases}$

A strategy is defined by picking the order of node expansion

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 3

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

 $\overline{\mathrm{QUEUEINGFN}} = \mathrm{insert}$ successors in decreasing order of desirability

Special cases:

greedy search A* search

AlMA Slides @ Stuart Russell and Peter Norvig, 1998 Chapter 4, Sections 1-2, 4 4

Romania with step costs in km

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to goal

 $\operatorname{E.g.},\ h_{\operatorname{SLD}}(n) = \operatorname{straight-line} \ \operatorname{distance} \ \operatorname{from} \ n \ \operatorname{to} \ \operatorname{Bucharest}$

Greedy search expands the node that appears to be closest to goal

AIMA Slides @Stuart Russell and Peter Norvig, 1998 Chapter 4, Sections 1-2, 4 5 AlMA Slides @ Stuart Russell and Peter Norvig, 1998 Chapter 4, Sections 1-2, 4 6

Greedy search example

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 7

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

AIMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 9

AlMA Slides © Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 10

Properties of greedy search

Complete??

<u>Time</u>??

Space??

 $\underline{\mathsf{Optimal}} ??$

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,

 $\overline{\mathsf{lasi}} o \mathsf{Neamt} o \mathsf{lasi} o \mathsf{Neamt} o$

Complete in finite space with repeated-state checking

 $\underline{\operatorname{Time}} ? ?~O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

\mathbf{A}^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n)=\cos t$ so far to reach n

 $h(n) = {\it estimated cost to goal from} \ n$

f(n) =estimated total cost of path through n to goal

 A^* search uses an admissible heuristic

i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n.

E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

A* search example

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 13

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 14

AlMA Slides © Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 15

AlMA Slides @ Scuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 16

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 19

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

 $f(G_2) \,=\, g(G_2)$

since $h(G_2) = 0$

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

 $> g(G_1)$

since G_2 is suboptimal

 $\geq f(n)$

since h is admissible

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 20

Optimality of A* (more useful)

<u>Lemma</u>: A^* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4. Sections 1-2. 4 21

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

 $\underline{\underline{\mathsf{Time}}} \ref{eq:time} \ \, \text{Exponential in [relative error in } h \times \mathsf{length of soln.]}$

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 22

Proof of lemma: Pathmax

For some admissible heuristics, f may decrease along a path

E.g., suppose n^\prime is a successor of n

But this throws away information! $f(n)=9\Rightarrow$ true cost of a path through n is ≥ 9 Hence true cost of a path through n' is ≥ 9 also

Pathmax modification to A*:

Instead of f(n') = g(n') + h(n'), use f(n') = max(g(n') + h(n'), f(n))

With pathmax, f is always nondecreasing along any path

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \mathsf{number} \ \mathsf{of} \ \mathsf{misplaced} \ \mathsf{tiles}$

 $h_2(n) = \mathsf{tota} | \underline{\mathsf{Manhattan}}$ distance

(i.e., no. of squares from desired location of each tile)

4

 $\frac{h_1(S) = ??}{h_2(S) = ??}$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) =$ number of misplaced tiles

 $h_2(n) = \text{total } \underline{\mathsf{Manhattan}} \ \mathsf{distance}$

(i.e., no. of squares from desired location of each tile)

 $\overline{h_1(S)}$ =?? 7 $\overline{h_2(S)}$ =?? 2+3+3+2+4+2+0+2 = 18

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 25

Dominance

If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d = 14 \ \mathsf{IDS} = 3,473,941 \ \mathsf{nodes}$$

$$A^*(h_1) = 539$$
 nodes

$$A^*(h_2) = 113$$
 nodes

$$d = 14$$
 IDS = too many nodes

$$A^*(h_1) = 39.135$$
 nodes

$$A^*(h_2) = 1.641$$
 nodes

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 26

Relaxed problems

Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to $any \ adjacent \ square$, then $h_2(n)$ gives the shortest solution

For TSP: let path be any structure that connects all cities \implies minimum spanning tree heuristic

Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use $iterative\ improvement$ algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 27

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4. Sections 1-2. 4 28

Chapter 4, Sections 1-2, 4 30

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

Example: *n*-queens

Put n queens on an $n\times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing( problem) returns a solution state
inputs: problem, a problem
local variables: current, a node
next, a node
current ← Make-Node(Initial-State[problem])
loop do
next← a highest-valued successor of current
if Value[next] < Value[current] then return current
current← next
end
```

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 31

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 4, Sections 1-2, 4 32

Simulated annealing

ldea: escape local maxima by allowing some "bad" moves $but\ gradually\ decrease\ their\ size\ and\ frequency$

```
function Simulated-Annealing (problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node

T, a "temperature" controlling the probability of downward steps current ← Make-Node (Initial-State[problem]) for t← 1 to ∞ do

T ← schedule[t]
if T=0 then return current

next ← a randomly selected successor of current

ΔE ← Value[next] − Value[current]
if ΔE > 0 then current ← next
else current ← next only with probability e<sup>ΔE</sup>/T
```

Properties of simulated annealing

At fixed "temperature" T_{\cdot} state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

 $T \ \operatorname{decreased} \ \operatorname{slowly} \ \operatorname{enough} \Longrightarrow \operatorname{always} \ \operatorname{reach} \ \operatorname{best} \ \operatorname{state}$

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling $\,$

Widely used in VLSI layout, airline scheduling, etc.