Inference in belief networks

CHAPTER 15.3—-4 + NEW
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I Inference tasks |

Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=e) = P(X;|E=¢e)P(X;|X;,E=e¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomelaction, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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I Enumeration algorithm [

Exhaustive depth-first enumeration: O(n) space, O(d") time

ENUMERATION ASK(X,e,bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X, ..., X,)

Q(x) « a distribution over X
for each value z; of X do

extend e with value z; for X

Q(z;) + ENUMERATEALL(VARS[bn],e)
return NORMALIZE(Q(X))

ENUMERATEALL(vars,e) returns a real number
if EMPTY?(vars) then return 1.0
else do
Y « FIRST(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATEALL(REST(vars),e)
else return &, P(y | Pa(Y)) x ENUMERATEALL(REST(vars)e,)
where e, is e extended with Y = y
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I Outline |

{ Exact inference by enumeration
& Exact inference by variable elimination
{ Approximate inference by stochastic simulation

{ Approximate inference by Markov chain Monte Carlo
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I Inference by enumeration [

Slightly intelligent way to sum out variables from the joint without ac-
tually constructing its explicit representation

Simple query on the burglary network:

P(B|J =true, M =true)

= P(B, J =true, M =true)/P(J =true, M = true)
= aP (B, J =true, M = true)

= ad . X,P(B,e,a, ] =true, M =true)

Rewrite full joint entries using product of CPT entries:
P(B =true|J =true, M = true)

= aX.X,P(B =true)P(e)P(a|B = true, €) P(J = truela) P(M = true|a)
= aP(B=true)X.P(e)X,P(a|B = true, €) P(J = truela) P(M = true|a)
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I Inference by variable elimination [

Enumeration is inefficient: repeated computation
e.g., computes P(J =true|a)P(M = true|a) for each value of e

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
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I Variable elimination: Basic operations [

Pointwise product of factors fi and fa:
fl(mlv"'7mj7y17"'7yk) Xf2(y17"'7yk7317"'731)
= flen T Yk 21, 2)
E-g-r fl(a7 b) X f2(b7 C) = f(a7 b,C)

Summing out a variable from a product of factors: move any constant
factors outside the summation:

Zx‘flx ka:flx Xfizwfi+1x ka:flx XfinX’
assuming f1,. .., f; do not depend on X
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I Complexity of exact inference [

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

1. AvBvC
2.CvDv-~A
3.BvCv-D
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I Sampling from an empty network [

function PRIORSAMPLE(bn) returns an event sampled from P(X1,. .., X,,) specified by bn
X ¢ an event with n elements
fori = 1tondo
z; ¢ a random sample from P(X; | Parents(X;))
return x

PO)=5
P(Cloudy) = (0.5,0.5) D,

sample — true

o

5

8 8(3

S
P(Sprinkler|Cloudy) = (0.1,0.9) e r
sample — false
P(Rain|Cloudy) = (0.8,0.2)
sample — true
P(WetGrass|—~Sprinkler, Rain) = (0.9, 0.1)
sample — true

nTmA |0
nHmHlD
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I Variable elimination algorithm [

function ELIMINATIONASK(X,e,bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X,..., X,)

if X € e then return observed point distribution for X
factors [ ]; vars < REVERSE(VARS[bn])
for each var in vars do
Jactors + [MAKEFACTOR(var, e)|factors)
if var is a hidden variable then factors« SUMOUT(var,factors)
return NORMALIZE(POINTWISEPRODUCT( factors))
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I Inference by stochastic simulation [

Basic idea:
1) Draw N samples from a sampling distribution .S
2) Compute an approximate posterior probability P
3) Show this converges to the true probability P

Outline:
— Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
— MCMC: sample from a stochastic process whose stationary
distribution is the true posterior
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I Sampling from an empty network contd. |

Probability that PRIORSAMPLE generates a particular event
Sps(xy...x,) = II]_  P(x;|Parents(X;)) = P(xy . ..x,)
i.e., the true prior probability

Let Nps(Y =y) be the number of samples generated for which Y =y,
for any set of variables Y.

Then P(Y =y) = Nps(Y =y)/N and
lim P(Y=y) = 3Sps(Y =y, H=h)
= P(Y=y)
That is, estimates derived from PRIORSAMPLE are consistent
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I Rejection sampling [

P(X|e) estimated from samples agreeing with e

function REJECTIONSAMPLING(X,e,bn,N) returns an approximation to P(X|e)
N[X] + a vector of counts over X, initially zero
for j=1to N do
X ¢ PRIORSAMPLE(bn)
if x is consistent with e then
N[z] ¢ N[z]+1 where z is the value of X in x
return NorRMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =true and 19 have Rain= false.

P(Rain|Sprinkler = true) = NORMALIZE((8, 19)) = (0.296,0.704)

Similar to a basic real-world empirical estimation procedure
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I Likelihood weighting [

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function WEIGHTEDSAMPLE(bn,e) returns an event and a weight
X+ an event with n elements; w1
for i=1ton do
if X; has a value z; in e
then we w x P(X;= z; | Parents(X;))
else z; « a random sample from P(X; | Parents(X;))
return x, w

function LIKELIHOOD WEIGHTING (X,e,bn,N) returns an approximation to P(X|e)
‘WI[X]  a vector of weighted counts over X, initially zero
for j=1to N do
X, w4+ WEIGHTEDSAMPLE(bn)
W(z]  W[z]+ w where z is the value of X in x
return NORMALIZE(W[X])
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I LW example contd. [

Sample generation process:
1. w+ 1.0
2. Sample P(Cloudy) = (0.5,0.5); say true
3. Sprinkler has value true, so

w + w X P(Sprinkler = true|Cloudy = true) = 0.1
4. Sample P(Rain|Cloudy = true) = (0.8,0.2); say true
5. WetGrass has value true, so

w + w x P(WetGrass = true|Sprinkler = true, Rain = true) = 0.099
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I Analysis of rejection sampling [

P(X|e) = aNpg(X,e) (algorithm defn.)
= Npg(X,e)/Nps(e) (normalized by Npg(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
=P(Xle) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P(e) is small
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I Likelihood weighting example [

Estimate P(Rain|Sprinkler =true, WetGrass = true)
true
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I Likelihood weighting analysis [

Sampling probability for WEIGHTEDSAMPLE is
]
Sws(y, e) = I, _, P(yi| Parents(Y;))
Note: pays attention to evidence in ancestors only
= somewhere “in between” prior and posterior distribution

Weight for a given sample y, e is
w(y,e) = I P(e;| Parents(E;))
Weighted sampling probability is
Sws(y. e)u(y,e)
= Hi-:lP(y,-|Parents(Yi)) II'_ | P(e;| Parents(E;))
= P(y,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
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[ Approximate inference using MCMC [

“State” of network = current assignment to all variables

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-AsKk(X,e,bn,N) returns an approximation to P(X|e)
local variables: N[X], a vector of counts over X, initially zero
Y, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j=1to N do
N[z] < N[z] + 1 where zis the value of X in x
for each Y; in Y do
sample the value of Y; in x from P(Y;|MB(Y;)) given the values of MB(Y;) in x
return NORMALIZE(N[X])

Approaches stationary distribution: long-run fraction of time spent in
each state is exactly proportional to its posterior probability
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I MCMC example contd. [

Random initial state: Cloudy =true and Rain = false

1. P(Cloudy|M B(Cloudy)) = P(Cloudy|Sprinkler,—Rain)
sample — false

2. P(Rain|M B(Rain)) = P(Rain|~Cloudy, Sprinkler, W etGrass)
sample — true

Visit 100 states
31 have Rain =true, 69 have Rain = false

P(Rain|Sprinkler =true, WetGrass = true)
= NORMALIZE((31, 69)) = (0.31, 0.69)
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I Stationary distribution [

m(y) = probability in state y at time ¢
m+1(y’) = probability in state y’ at time ¢ + 1

41 in terms of 7 and ¢(y — y')
m(y') = Bym(y)aly = ¥')
Stationary distribution: m = w41 =7
m(y) = Eyr(y)aly = y)  forally’
If 7 exists, it is unique (specific to ¢y — y'))

In equilibrium, expected “outflow” = expected “inflow”
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I MCMC Example

Estimate P(Rain|Sprinkler =true, WetGrass = true)

Sample Cloudy then Rain, repeat.

Count number of times Rain is true and false in the samples.

Markov blanket of Cloudy is Sprinkler and Rain

Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass
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I MCMC analysis: Outline

Transition probability ¢(y — y')

Occupancy probability m(y) at time ¢

Equilibrium condition on m; defines stationary distribution 7(y)
Note: stationary distribution depends on choice of ¢(y — y')

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:

sample each variable given current values of all others

= detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to

sampling conditioned on each variable's Markov blanket
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I Detailed balance

“"Outflow” = “inflow” for each pair of states:

m(y)aly = y) =7(y)e(y' =y) foraly, y’

Detailed balance = stationarity:
Yyr(y)aly = ¥) = Xyr(y)a(y' = y)
= 7(y)ya(y' = y)
= 7(y)

MCMC algorithms typically constructed by designing a transition

probability ¢ that is in detailed balance with desired 7
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I Gibbs sampling [

Sample each variable in turn, given all other variables

Sampling Y;, let Y; be all other nonevidence variables
Current values are y; and y;; e is fixed
Transition probability is given by

a(y = ¥") = a(y, ¥ = ¥ ¥) = P(ylyi.e)
This gives detailed balance with true posterior P(y|e):

m(¥)aly = y') = P(yle)P(y|¥: e) = Plyi, File) P(yi|¥:, €)
P(yil¥i, e)P(¥;le) P(yil¥i,e) (chain rule)
P(yi|y:,e)P(y, ¥ile) (chain rule backwards)
ay' = y)n(y') =7(y)aly’ = y)
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[ Performance of approximation algorithms ||

Absolute approximation: |P(X|e) — P(X|e)| < e

Relative approximation: P(X}f();,f;()x el < ¢

Relative = absolute since 0 < P <1 (may be O(27"))
Randomized algorithms may fail with probability at most &
Polytime approximation: poly(n,e™!, logé~!)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any €, < 0.5

(Absolute approximation polytime with no evidence—Chernoff bounds)
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I Markov blanket sampling [

A variable is independent of all others given its Markov blanket:
P(y|yi,e) = Py MB(Y)))

Probability given the Markov blanket is calculated as follows:
P(y;|MB(Y))) = P(y§|Parents(Y,~))HZ].EC;,,-M,.,Z,,(yl.)P(zj|Parent5(Zj))

Hence computing the sampling distribution over Y; for each flip requires
just cd multiplications if Y; has ¢ children and d values; can cache it if
¢ not too large.

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(Y;|M B(Y;)) won't change much (law of large numbers)

ATMA Slides @Stuart Russell and Peter Norvig, 1998 Chapter 15.3 4 + new 26



