Belief networks

Chapter 15.1-2

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 1

Outline

Conditional independence

♦ Bayesian networks: syntax and semantics

Exact inference

♦ Approximate inference

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Independence

Two random variables A B are (absolutely) independent iff P(A|B) = P(A)or P(A, B) = P(A|B)P(B) = P(A)P(B) ${\rm e.g.}\ A\ {\rm and}\ B\ {\rm are\ two\ coin\ tosses}$

If n Boolean variables are independent, the full joint is $\mathbf{P}(X_1,\ldots,X_n)=\Pi_i\mathbf{P}(X_i)$ hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met

Chapter 15.1-2 3

Conditional independence

Chapter 15.1-2 2

Chapter 15.1-2 4

Consider the dentist problem with three random variables: Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)i.e., Catch is conditionally independent of Toothache given Cavity

The same independence holds if I haven't got a cavity:

(2) $P(Catch|Toothache, \neg Cavity) = P(Catch|\neg Cavity)$

Conditional independence contd.

Equivalent statements to (1)

AIMA Slides @Stuart Russell and Peter Norvig, 1998

(1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity) Why??

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)Why??

Full joint distribution can now be written as

 $\mathbf{P}(Toothache, Catch, Cavity) = \mathbf{P}(Toothache, Catch|Cavity) \mathbf{P}(Cavity)$ = $\mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

i.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

Conditional independence contd.

Equivalent statements to (1)

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

(1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity) Why??

P(Toothache|Catch,Cavity)

= P(Catch|Toothache, Cavity) P(Toothache|Cavity) / P(Catch|Cavity)

= P(Catch|Cavity)P(Toothache|Cavity)/P(Catch|Cavity) (from 1)

= P(Toothache|Cavity)

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)Why??

P(Toothache, Catch|Cavity)

= P(Toothache|Catch, Cavity)P(Catch|Cavity)(product rule)

 $= P(Toothache|Cavity)P(Catch|Cavity) \; (\text{from 1a})$

Belief networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax

- a set of nodes, one per variable
- a directed, acyclic graph (link ≈ "directly influences")
- a conditional distribution for each node given its parents: $\mathbf{P}(X_i|Parents(X_i))$

In the simplest case, conditional distribution represented as a conditional probability table (CPT)

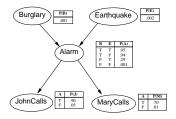
AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 7

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

 $\label{lem:all_surface} \begin{tabular}{ll} Variables: $Burglar, Earthquake, Alarm, JohnCalls, MaryCalls \\ Network topology reflects "causal" knowledge: \end{tabular}$



Note: $\leq k$ parents $\Rightarrow O(d^k n)$ numbers vs. $O(d^n)$

AIMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 8

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$\mathbf{P}(X_1,\ldots,X_n)=\prod_{i=1}^n\mathbf{P}(X_i|Parents(X_i))$$

e.g.,
$$P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)$$
 is given by??

AIMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 9

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$\mathbf{P}(X_1,\ldots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i|Parents(X_i))$$

$$\begin{array}{l} \text{e.g., } P(J \land M \land A \land \neg B \land \neg E) \ \underline{\text{is given by}??} \\ = P(\neg B)P(\neg E)P(A|\neg B \land \neg E)P(J|A)P(M|A) \end{array}$$

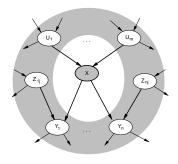
"Local" semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics ⇔ global semantics

AIMA Slides @ Stuart Russell and Peter Norvig, 1998 Chapter 15.1-2 10

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents



Constructing belief networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables X_1,\ldots,X_n
- $2 \quad \text{For } i = 1 \text{ to } n$

add X_i to the network select parents from X_1,\ldots,X_{i-1} such that $\mathbf{P}(X_i|Parents(X_i))=\mathbf{P}(X_i|X_1,\ldots,X_{i-1})$

This choice of parents guarantees the global semantics: $\mathbf{P}(X_1,\dots,X_n) = \Pi_{i=1}^n \mathbf{P}(X_i|X_1,\dots,X_{i-1}) \text{ (chain rule)} \\ = \Pi_{i=1}^n \mathbf{P}(X_i|Parents(X_i)) \text{ by construction}$

AIMA Sider @Suan Runelland Peter Norvig, 1998 Chapter 15.1-2 11 AIMA Sider @Suan Runelland Peter Norvig, 1998 Chapter 15.1-2 12

Example

Suppose we choose the ordering M, J, A, B, E

$$P(J|M) = P(J)$$
?

. No
$$P(A|J,M) = P(A|J)? \ P(A|J,M) = P(A)?$$

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 13

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 14

.

No

$$P(B|A, J, M) = P(B|A)$$
?
 $P(B|A, J, M) = P(B)$?

AIMA Slides @Stuart Russell and Peter Norvig, 1998 Chapter 15.1-2 15

Earthquake

Yes No

$$\begin{split} &P(E|B,A,J,M) = P(E|A)?\\ &P(E|B,A,J,M) = P(E|A,B)? \end{split}$$

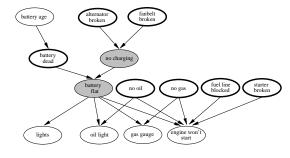
AlMA Slides © Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 16

Example: Car diagnosis

Initial evidence: engine won't start

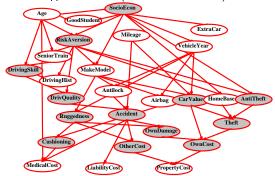
Testable variables (thin ovals), diagnosis variables (thick ovals) Hidden variables (shaded) ensure sparse structure, reduce parameters



No Yes

Example: Car insurance

Predict claim costs (medical, liability, property) given data on application form (other unshaded nodes)



AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 19

Compact conditional distributions

CPT grows exponentially with no. of parents

CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

<u>Deterministic</u> nodes are the simplest case:

X = f(Parents(X)) for some function f

Eg Boolean functions

 $NorthAmerican \Leftrightarrow Canadian \lor US \lor Mexican$

E.g., numerical relationships among continuous variables

$$\frac{\partial Level}{\partial t} = \text{ inflow } + \text{ precipation - outflow - evaporation}$$

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 15.1-2 20

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add <u>leak node</u>)
- 2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
T	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

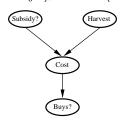
Number of parameters <u>linear</u> in number of parents

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 1 5.1-2 21

Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)



Option 1: discretization—possibly large errors, large CPTs

Option 2: finitely parameterized canonical families

- 1) Continuous variable, discrete+continuous parents (e.g., Cost)
- 2) Discrete variable, continuous parents (e.g., Buys?)

AIMA Slides @ Stuart Russell and Peter Norvig, 1998

Chapter 1 5.1-2 22

Continuous child variables

Need one <u>conditional density</u> function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

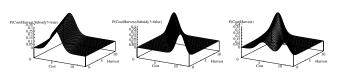
P(Cost = c | Harvest = h, Subsidy? = true)

$$= N(a_t h + b_t, \sigma_t)(c)$$

$$=rac{1}{\sigma_t\sqrt{2\pi}}exp\left(-rac{1}{2}\left(rac{c-(a_th+b_t)}{\sigma_t}
ight)^2
ight)$$

Mean Cost varies linearly with Harvest, variance is fixed Linear variation is unreasonable over the full range but works OK if the likely range of Harvest is narrow

Continuous child variables

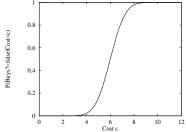


All-continuous network with LG distributions ⇒ full joint is a multivariate Gaussian

Discrete+continuous LG network is a <u>conditional Gaussian</u> network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a "soft" threshold:



 \underline{Probit} distribution uses integral of Gaussian:

$$\Phi(x) = \int_{-\infty}^{x} N(0,1)(x) dx$$

$$P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma)$$

Can view as hard threshold whose location is subject to noise

AlMA Slides @ Stuart Russell and Peter Norvig, 1998

AIMA Slides @ Stuart Russell and Peter Norvig, 1998

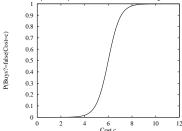
Chapter 1 5.1-2 25

Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c + \mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:



Chapter 15.1-2 26