Belief networks

CHAPTER 15.1-2
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I Independence [

Two random variables A B are (absolutely) independent iff
P(A|B) = P(A)
or P(A, B) = P(A|B)P(B) = P(A)P(B)
e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is
P(Xy,...,X,) =ILP(X;)
hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met
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I Conditional independence contd. [

Equivalent statements to (1)

(1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity) Why??

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity) P(Catch|Cavity)

Why??

Full joint distribution can now be written as

P(Toothache, Catch, Cavity) = P(Toothache, Catch|Cavity)P(Cavity)

= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
i.e., 2+ 2 4+ 1 =5 independent numbers (equations 1 and 2 remove 2)
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I Outline |

{ Conditional independence
{ Bayesian networks: syntax and semantics
{ Exact inference

{ Approximate inference
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I Conditional independence [

Consider the dentist problem with three random variables:
Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has 23 — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)
i.e., Catch is conditionally independent of T'oothache given Cavity

The same independence holds if | haven't got a cavity:
(2) P(Catch|Toothache, ~Cavity) = P(Catch|-Cavity)

ATMA Slides @Stuart Russell and Peter Norvig, 1995 Chapter 15.1 2 4

I Conditional independence contd. [

Equivalent statements to (1)
(1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity) Why??

P(Toothache|Catch, Cavity)
= P(Catch|Toothache, Cavity)P(Toothache|Cavity)/ P(Catch|Cavity)
= P(Catch|Cavity) P(Toothache|Cavity)/ P(Catch|Cavity) (from 1)
= P(Toothache|Cavity)

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity) P(Catch|Cavity)

Why??

P(Toothache, Catch|Cavity)
= P(Toothache|Catch,Cavity) P(Catch|Cavity) (product rule)
= P(Toothache|Cavity)P(Catch|Cavity) (from 1a)
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I Belief networks |

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link = “directly influences”)
a conditional distribution for each node given its parents:
P(X,|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT)
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I Semantics |

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(Xy,...,X,) =II'_,P(X;|Parents(X,))
eg, P(JAMAANA=BA=E) is given by??
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I Markov blanket |

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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I Example [

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is there
a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

Earthquake

- ol
= | m|

Note: < k parents = O(d*n) numbers vs. O(d")
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I Semantics |

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(Xy, ..., X,) = I} P(Xj| Parents(X;))

eg, P(JAMAANA=BA=E) is given by??
= P(=B)P(~E)P(A|-B A—E)P(J|A)P(M|A)

“Local” semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics < global semantics
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I Constructing belief networks [

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X3, ..., X,
2. Fori=1ton
add X to the network
select parents from X, ..., X; ; such that
P(Xi\Parents(Xi)) = I)()(i|)(17 ey Xi—l)

This choice of parents guarantees the global semantics:
P(Xy,...,X,) =1I/_P(X;| Xy, ..., Xi_1) (chain rule)

= II}_ ,P(X;|Parents(X;)) by construction
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I Example [

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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\

Burglary

. No

P(B|A, J,M) = P(B|A)?

P(B|A,J,M) = P(B)?
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No
Yes
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\

. N
P(A]J, M) = P(A|J)?OP(A\J, M) = P(A)?
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/

Earthquake

Yes
. No
P(E|B,A,J,M) = P(E|A)?
P(E|B,A,J,M) = P(E|A, B)?
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I Example: Car diagnosis [

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters

fanbelt
broken

fuel line
blocked
engine won't
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I Example: Car insurance [

Predict claim costs (medical, liability, property)
given data on application form (other unshaded nodes)
— =D
:
Ay S
ST D
akeM
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[ Compact conditional distributions contd. ||

Noisy-OR distributions model multiple noninteracting causes
1) Parents U; ... Uy, include all causes (can add leak node)
2) Independent failure probability g; for each cause alone
= P(X‘UlU/,ﬁ .i+1"'_'Uk) =1 71_.[?:1(],'

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=10.2x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=10.6 x 0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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I Continuous child variables [

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:
P(Cost=c|Harvest = h, Subsidy? = true)
= N(ath + b, 01)(c)
1 (c — (ath + bf))Q)

1
= exp|——
o/ 2 2 o
Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range

but works OK if the likely range of Harvest is narrow
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P(CostHapyegt Subsicy=tre) P(CosHarvest Subsidy=false)
03

I Compact conditional distributions [

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g.. Boolean functions
NorthAmerican < Canadian Vv US V Mexican

E.g., numerical relationships among continuous variables

dLevel . L. .
e inflow + precipation - outflow - evaporation
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I Hybrid (discrete4continuous) networks [

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs

Option 2: finitely parameterized canonical families

1) Continuous variable, discrete-+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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I Continuous child variables [

PCgarves)
0%

All-continuous network with LG distributions
= full joint is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e.,
a multivariate Gaussian over all continuous variables for each combina-
tion of discrete variable values
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I Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a “soft” threshold:
1 T T T T T
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Probit distribution uses integral of Gaussian:
®(z) = oo “N(0,1)(z)dz
P(Buys? =true | Cost=c) = ®((—c + p)/0)
Can view as hard threshold whose location is subject to noise
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Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:
P(Buys? =true | Cost=c) =

Sigmoid has similar shape to probit but much longer tails:
1

P(Buys?=falseiCost=c)
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