Bayesian Learning

Two Roles for Bayesian Methods

Practical learning algorithms:
e Naive Bayes learning
e Bayesian network learning
e Combine prior knowledge with observed data

e Require prior probabilities

Useful conceptual framework:
e “Gold standard” for evaluating other learners

e Tools for analysis

Choosing Hypotheses

Find most probable hypothesis given training data

Mazximum a posteriori hypothesis hasap:

= P(h|D
harap arg?eag (h|D)

= arg max P(DIR)P(R)
— BN P(D)
= arg max P(D|h)P(h)

Assuming P(h;) = P(h;) we can further simplify,
and choose the Mazimum likelihood (ML) hypothesis

hup = arg max P(D|hs)
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Bayes’ Theorem

P(D|h)P(h)
P(h|D) = —————
1>y =
P(h) = prior probability of hypothesis h
P(D) = prior probability of training data D
P(h|D) = probability of h given D
P(D|h) = probability of D given h

Example

Does patient have AIDS or not?

A patient takes a lab test and the result comes
back positive. The test returns a correct positive
result in only 98% of the cases in which the disease
is actually present, and a correct negative result in
only 97% of the cases in which the disease is not
present. Furthermore, 0.008 of the entire
population have AIDS.



Basic Formulas for Probabilities

e Product Rule: probability P(A A B) of a conjunction of
two events A and B:

P(AIDS) =
P(-AIDS) = P(ANAB)=P(A|B)P(B) = P(B|A)P(4)
P(+|AIDS) = e Sum Rule: Probability of a disjunction of two events A
P(—|AIDS) = and B:
P(+|-AIDS) = P(AV B)=P(A)+ P(B)— P(AAB)
P(—|-AIDS) = e Theorem of total probability : If events Aq,..., A, are
P(AIDS|+) = mutually exclusive with Y7 | P(4;) = 1, then
P(B) =) P(B|A;)P(A))
i=1
Relation to Concept Learning
Brute-Force MAP Hypothesis Learner Let D = (c(z1),...,c(zm)) (examples’ classes)
Choose P(D|h)
1. For each hypothesis h in H, calculate the posterior e P(D|h) = 1if h consistent with D
probability P(DIR) = 0 otherwi
POMID) — P(D|h)P(h) ] ( | )— otherwise
(h|D) = P(D) Choose P(h) to be uniform distribution
2. Output the hypothesis fuasap with the highest o P(h) = g forall hin H
posterior probability Then
haap = argmax P(h|D) e if h is consistent with D
heH |VSu,pl
P(h|D) =
0 otherwise
Learning a Real-Valued Function
. 3 .y . ‘l
Evolution of Posterior Probabilities y
f
P(h) P(h|D1) P(h|D1,D2)
hypotheses hypotheses hypotheses
(a (b) (c)
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x



Consider any real-valued target function f
Training examples (x;, d;), where d; is noisy training value

o d; = fx;) +e Maximum likelihood hypothesis:

e ¢; is random variable (noise) drawn independently for

each z; according to some Gaussian distribution with m
mean=0 hymr = argmaxp(D|h) = argmax H p(d;|h)
heH heH .3
Then the maximum likelihood hypothesis hy;y, is the one b nesra
that minimizes the sum of squared errors: = argmax —3(F=E)
heH 11_[1 vV 27r02

hyi = arg m1n2 — h(z;))?

Most Probable Classification

Maximize natural log of this instead ... of New Instances
1 (di — h(z:) 2 So far we.’ve sought the most probable hypothesis given the
hur = argmalen S < ) data D (i.e., harap)
heH 4 Vore? 2 o
"1 di— h(zs) 2 Giver} new instance x, what is its most probable
= argmax —= ( : ! ) classification? Not hprap(x)!
heH i=1 i
" 9 Consider:
- arhgrr;{axz = (di = h(z:)) e Three possible hypotheses:
P(hy1|D) = 4, P(he|D) = .3, P(hs|D) =
= arhgenf-lzmz (d; — h( ml)) e Given new instance x,
= hi(z) =+, ha(z) = —, ha(z) = —

e What’s most probable classification of x?

Bayes Optimal Classifier

therefore
Bayes optimal classification:
> P(+/hi)P(hi|D) = 4
arg max > P(vj|hi)P(hs| D) hieH
Y hiel > P(—|h:)P(hi|D) = .6
h;€H
Example:
and

arg max > P(vj|hi)P(hi|D) = -

P(hi|D) = 4, P(—|h1) =0, P(+|h1)=1 v,

P(ha|D) = 3, P(=|hs) =1, P(+|hs) =0
P(hs|D) =3, P(—|hs) =1, P(+[h3) =0



Gibbs Classifier

Bayes optimal classifier is hopelessly inefficient

Gibbs algorithm:
1. Choose one hypothesis at random, according to P(h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at
random from H according to priors on H. Then

E[errorGibbs] S 2 x E[errorBayesOptimal]

Naive Bayes assumption:

P(ay,az ... anlv;) = [ [ Plailv;)
i

which gives

Naive Bayes classifier:

vy p = argmax P(v;) H P(a;|vj)
v; EV ;

1

Naive Bayes: Example
Consider PlayTennis again, and new instance
(Outlk = sun, Temp = cool, Humid = high, Wind = strong)
Want to compute:

UNB = argm‘fmx P(v;) H P(ailv;)
'Uje N

2

P(y) P(sunly) P(coolly) P(highly) P(strong|y) = .005
P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

— UNB =N

Naive Bayes Classifier

Assume target function f: X — V, where each instance z
described by attributes (a1,asz...an).

Most probable value of f(z) is:

vmap = argmaxP(vjlai,az...ay)
v; €V
P )P (v;
UMAP = Aargmax (a1, a2 .. . anfv;) P(v))
U]‘EV P(a1,a2...an)

= argmax P(ai, az...an|vj)P(v))
v;EV

Naive Bayes Algorithm

Naive_Bayes_Learn(ezamples)
For each target value v;
e P(vj) — estimate P(v;)
e For each attribute value a; of each attribute a

P(a;|v;) + estimate P(a;|v;)

Classify _New_Instance(z)

vnp = argmax P(v;) H P(a;|v;)
v; EV

a; €T

Naive Bayes: Subtleties (1)

Conditional independence assumption is often violated

P(ai,az...a,|v5) = H P(a;|vj)

... but it works surprisingly well anyway. Don’t need
estimated posteriors P(v;|z) to be correct; need only that

argmax P(v;) H P(a;|v;) = argmax P(v;)P(ay . . ., an|v;)

v; €V i v; €

Naive Bayes posteriors often unrealistically close to 1 or 0



Naive Bayes: Subtleties (2)

What if none of the training instances with target value v;
have attribute value a;? Then

P(a;lv;) =0, and...

P(v;) Hp(ai|vj) =0

Learning to Classify Text

Why?
e Learn which news articles are of interest

e Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents?

Naive Bayes conditional independence assumption

length(doc)
P(doc|v;) = H P(a; = wi|vj)

i=1
where P(a; = wg|v;) is probability that word in position ¢

is wy, given v;

One more assumption:
P(a; = wi|v;) = P(am = wgl|vj), Vi,m

Typical solution is m-estimate for P(a;|v;)

S e + mp
P(a;|vj) « ———
(aify) — P
where
e 7 is number of training examples for which v = vy,

e n. number of examples for which v = v; and a = q;
e p is prior estimate for P(a;|v;)

e m is weight given to prior
(i.e. number of “virtual” examples)

Learning to Classify Text

Target concept Interesting? : Document — {+,—}

1. Represent each document by vector of words:
one attribute per word position in document

2. Learning: Use training examples to estimate
e P(+)

e P(-)

e P(doc|+)

e P(doc|—)

LEARN_NAIVE_BAYES_TEXT(Ezamples, V)
1. Collect all words & tokens that occur in Examples
e Vocabulary « all distinct words & tokens in Exzamples
2. Compute all probabilities P(v;) and P(wg|vj)
e For each target value v; in V do
— docsj < Examples for which the target value is v;
= P(0j) — [myampten

— Text; + concatenate all members of docs;

n « total number of words in Text; (counting
duplicate words multiple times)

— for each word wy in Vocabulary

* ny < number of times word wy, occurs in Text;

+1
* P(wp|v;) — srvesasaars]



CLASSIFY _NAIVE_BAYES_TEXT(Doc)

e positions < all word positions in Doc that contain
tokens found in Vocabulary

e Return vy p, where

unp = argmax P(v;) H P(a;|vj)
v €V i€Epositions

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!...

From: xxxQyyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opinion)
Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than that.
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was any
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of
his own, but because some thugs in Toronto decided

Bayesian Networks

Interesting because:

¢ Naive Bayes assumption of conditional independence
too restrictive

e But it’s intractable without some such assumptions ...

e Bayesian networks describe conditional independence
among subsets of variables

e This allows combining prior knowledge about
(in)dependencies among variables with observed
training data

Example: 20 Newsgroups
Given 1000 training documents from each group

Learn to classify new documents according to which
newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball
comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med
talk.politics.misc talk.politics.guns

Naive Bayes: 89% classification accuracy

Learning Curve for 20 Newsgroups
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Accuracy vs. Training set size (1/3 withheld for test)

Conditional Independence
Definition: X is conditionally independent of Y given Z if
the probability distribution governing X is independent of
the value of Y given the value of Z; that is, if
(Vzi,yj,zk) P(X = .’E1|Y = yj,Z = zk) = P(X = .’1:,'|Z = zk)

More compactly, we write

P(X]Y,Z) = P(X|2)



Example: Thunder is conditionally independent of Rain,
given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naive Bayes uses cond. indep. to justify

P(X,Y|2) P(X|Y, Z)P(Y|Z)

P(X|2)P(Y|2)

Network represents joint probability distribution over all
variables

e E.g., P(Storm, BusTourGroup,...,ForestFire)

e In general,

n

P(yi,. yYn) = H P(y;|Parents(Y;))

i=1

where Parents(Y;) denotes immediate predecessors of
Y; in graph

e So joint distribution is fully defined by graph, plus the
P(y;|Parents(Y;))

e What is the graph of Naive Bayes?

Learning Bayesian Networks

Several variants of this learning task
e Network structure might be known or unknown
e Training examples might provide values of all network

variables, or just some

If structure known and no missing values,
it’s as easy as training a Naive Bayes classifier

Bayesian Network

BusTourGroup

SB S,-B -S,B -S,-B
C 04 01 08 0.2

-C 06 09 02 0.8

Network represents a set of conditional independence
assertions:

Each node is conditionally independent of its
nondescendants, given its parents

Inference in Bayesian Networks

How can one infer the (probabilities of) values of one or
more network variables, given observed values of others?

e Bayes net contains all information needed for this
inference

e In general case, problem is NP-hard
In practice, can succeed in many cases

e Exact inference methods work well for some network
structures

e Monte Carlo methods “simulate” the network
randomly to calculate approximate solutions

The EM Algorithm

Suppose structure known, variables partially observable

E.g., observe ForestFire, Storm, BusTourGroup, Thunder,
but not Lightning, Campfire ...

Initialize parameters ignoring missing information
Repeat until convergence:

E step: Calculate expected vals of unobserved variables,
assuming current parameter values

M step: Calculate new parameter values to maximize
probability of data (observed & estimated)



Example

()

O O = @

Examples: 0

1

1

1 [
Initialization: P(B|A) = P(C|B) =
P(A) = P(B|-A) = P(C|-B) =
E-step: P(?=1) = P(B|A,~C) = S22 = =0
M-step: P(B|A) = P(C|B) =
P(A) = P(B|-4) = P(C|-B) =

E-step: P(? =1) =0 (converged)

Bayesian Learning: Summary

Optimal prediction

Naive Bayes learner
e Text classification
e Bayesian networks

EM algorithm

Unknown Structure

Search:
¢ Initial state: empty network, prior network
e Operators: Add arc, delete arc, reverse arc

e Evaluation: Posterior probability



