Von Neumann Execution Model

Fetch:
- send PC to memory
- transfer instruction from memory to CPU
- increment PC

Decode & read ALU input sources

Execute
- an ALU operation
- memory operation
- branch target calculation

Store the result in a register or memory

Execution is comprised of a linear series of addressable instructions
- next instruction to be executed is pointed to by the PC
- send PC to memory
- next instruction to execute depends on what happened during the execution of the current instruction

Instruction operands reside in a centralized processor memory (GPRs)
Dataflow Execution Model

Instructions & initial input values are already in the processor:

Source operands arrive from a producer instruction via a network

Check to see if all an instruction’s operands are there

Execute
 • an ALU operation
 • memory operation
 • branch target calculation

Send the result
 • to the consumer instructions or memory

Dataflow Execution Model

Execution is driven by the availability of input operands
 • operands are consumed
 • output is generated
 • no PC

Result operands are passed directly to consumer instructions
 • no register file
Promise of Dataflow Parallelism

![Diagram showing speedup vs single-threaded for different types of operations.]

Dataflow Computers

Motivation:
- exploit instruction-level parallelism on a massive scale
- more fully utilize all processing elements

Believed this was possible if:
1. expose instruction-level parallelism by using a functional-style programming language
 - no side effects wrt generating new values
 - only restrictions were producer-consumer
2. scheduled code for execution on the hardware greedily
3. hardware support for data-driven execution
Dataflow Execution

All computation is data-driven.
- binary is represented as a directed graph of data dependences
 - nodes are operations executing in a logical processor
 - values travel on arcs

 \[
 \begin{align*}
 a & \quad b \\
 + & \\
 a+b \\
 \end{align*}
 \]

- WaveScalar instruction

 \[
 \begin{array}{c|c|c}
 \text{opcode} & \text{destination1} & \text{destination2} \\
 \end{array}
 \]

Data-dependent operations are connected, producer to consumer
Code & initial values loaded into memory
Execute according to the dataflow firing rule
- when operands of an instruction have arrived on all input arcs, instruction may execute
- value on input arcs is removed
- computed value placed on output arc

\[
\begin{align*}
+ \\
\end{align*}
\]
Dataflow Example

\[A[j + i*i] = i; \]
\[b = A[i*j]; \]
Dataflow Example

\[A[j + i \cdot j] = i; \]
\[b = A[i \cdot j]; \]

Dataflow Execution

Control
- **steer** (\(\rho \))
 - execute one path after the condition variable is known (steer)
- **merge** (\(\phi \))
 - execute both paths & pass one set of values at the end (merge)
 - convert control dependence to data dependence
WaveScalar Control

\[\rho \text{ (steer)} \]

\[\phi \text{ (merge)} \]

\[
\begin{align*}
\text{if } (A > 0) & \quad D = C + B; \\
\text{else} & \quad D = C - E; \\
& \quad F = D + 1;
\end{align*}
\]

ISA for a Dataflow Computer

Instructions
- operation
- names of destination instructions

Data packets, called Tokens
- value
- tag to identify the operand & match it with its fellow operands in the same dynamic instruction
 - architecture dependent
 - instruction number
 - iteration number
 - activation/context number (for functions, especially recursive)
 - thread number
- Dataflow computer executes a program by receiving, matching tags, computing & sending out tokens.
Types of Dataflow Computers

static:
- one copy of each instruction
- no simultaneously active iterations, no recursion

dynamic
- multiple copies of each instruction
- better performance from increased ILP
- gate counting technique to prevent instruction explosion

k-bounding
- extra instruction with K tokens on its input arc; passes a token to 1st instruction of a loop iteration
- 1st instruction consumes a token (needs one extra operand to execute)
- last instruction in loop iteration produces another token at end of iteration
- limits active iterations to k
Problems with Dataflow Computers

1. Memory ordering
 • dataflow cannot guarantee a correct ordering of memory operations

2. Language compatibility
 • dataflow computer programmers could not use mainstream programming languages, such as C
 • could not handle "complex" data structures
 • developed special languages in which order didn’t matter
Problems with Dataflow Computers

3. Scalability:
 • big token store
 • side-effect-free programming language with no mutable data structures
 • each update creates a new data structure
 • 1000 tokens for 1000 data items even if the same value
 • slow access
 • aggravated by the state of processor technology at the time
 • associative search impossible; accessed with slower hash function
 • delays in processing (only so many functional units, arbitration both for PEs and storing of result, long wires)

Dataflow Example

\[
\begin{align*}
A[j + i*i] &= i; \\
b &= A[i*j];
\end{align*}
\]
Example to Illustrate the Memory Ordering Problem

\[
A[j + i*i] = i;
\]

\[
b = A[i*j];
\]
Example to Illustrate the Memory Ordering Problem

\[A[j + i \times i] = i; \]
\[b = A[i \times j]; \]

Load-store ordering issue

Partial Solutions

Solutions led away from pure dataflow execution

Data representation in memory

- **I-structures:**
 - write once; read many times
 - early reads are deferred until the write
- **M-structures:**
 - multiple reads & writes, but they must alternate
 - reusable structures which could hold multiple values
Partial Solutions

Local (register) storage for back-to-back instructions

Frames within the token store for a sequence of instructions
 • example: each frame stores the data for one iteration or one thread
 • not have to search entire token store (use an offset to the frame)

Physically partition token store & place each partition with a PE
 • dataflow execution within coarse-grain threads