Von Neumann Execution Model

Fetch:
- send PC to memory
- transfer instruction from memory to CPU
- increment PC

Decode & read ALU input sources

Execute
- an ALU operation
- memory operation
- branch target calculation

Store the result in a register or memory

Execution is comprised of a linear series of addressable instructions
- next instruction to be executed is pointed to by the PC
- send PC to memory
- next instruction to execute depends on what happened during the execution of the current instruction

Instruction operands reside in a centralized processor memory (GPRs)
Dataflow Execution Model

Instructions & initial input values are already in the processor:

Operands arrive from a producer instruction via a network

Check to see if all an instruction’s operands are there

Execute
 • an ALU operation
 • memory operation
 • branch target calculation

Send the result
 • to the consumer instructions or memory

Dataflow Execution Model

Execution is driven by the availability of input operands
 • operands are consumed
 • output is generated
 • no PC

Result operands are passed directly to consumer instructions
 • no register file
Promise of Dataflow Parallelism

Motivation:

- exploit instruction-level parallelism on a massive scale
- more fully utilize all processing elements

Believed this was possible if:

1. expose instruction-level parallelism by using a functional-style programming language
 - no side effects wrt generating new values
 - only restrictions were producer-consumer
2. scheduled code for execution on the hardware greedily
3. hardware support for data-driven execution
Dataflow Execution

All computation is **data-driven**.

- Binary is represented as a directed graph of data dependences
 - Nodes are operations executing in a logical processor
 - Values travel on arcs

```
+      
a \rightarrow b  
\downarrow 
\text{a+b}
```

- WaveScalar instruction

```
\text{opcode destination1 destination2}
```

Data-dependent operations are connected, producer to consumer

Code & initial values loaded into memory

Execute according to the **dataflow firing rule**

- When operands of an instruction have arrived on all input arcs, instruction may execute
- Value on input arcs is removed
- Computed value placed on output arc
Dataflow Example

\[A[j + i \times i] = i; \]
\[b = A[i \times j]; \]

Spring 2012
CSE 471 - Dataflow Machines
Dataflow Example

\[A[j + i*i] = i; \]
\[b = A[i*j]; \]

Dataflow Execution

Control

- **steer (\(\rho\))**
 - value
 - T path
 - F path

- **merge (\(\phi\))**
 - T path value
 - F path value

- execute one path after the condition variable is known (steer)
- execute both paths & pass one set of values at the end (merge)
- convert control dependence to data dependence
WaveScalar Control

\[\rho \text{ (steer)} \]

\[\phi \text{ (merge)} \]

\[
\begin{align*}
\text{if } (A > 0) & : D = C + B; \\
\text{else} & : D = C - E; \\
F &= D + 1;
\end{align*}
\]

ISA for a Dataflow Computer

Instructions
- operation
- names of destination instructions

Data packets, called Tokens
- value
- tag to identify the operand & match it with its fellow operands in the same dynamic instruction
 - architecture dependent
 - instruction number
 - iteration number
 - activation/context number (for functions, especially recursive)
 - thread number
- Dataflow computer executes a program by receiving, matching tags, computing & sending out tokens.
Types of Dataflow Computers

static:
- one copy of each instruction
- no simultaneously active iterations, no recursion

dynamic
- multiple copies of each instruction
- better performance from increased ILP
- gate counting technique to prevent instruction explosion

k-bounding
- extra instruction with K tokens on its input arc; passes a token to 1st instruction of a loop iteration
- 1st instruction consumes a token (needs one extra operand to execute)
- last instruction in loop iteration produces another token at end of iteration
- limits active iterations to k
Canonical Dataflow Computer

![Diagram of a canonical dataflow computer](image)

Problems with Dataflow Computers

1. Memory ordering
 - dataflow cannot guarantee a correct ordering of memory operations

2. Language compatibility
 - dataflow computer programmers could not use mainstream programming languages, such as C
 - could not handle "complex" data structures
 - developed special languages in which order didn’t matter
Problems with Dataflow Computers

3. Scalability:
 - big token store
 - side-effect-free programming language with no mutable data structures
 - each update creates a new data structure
 - 1000 tokens for 1000 data items even if the same value
 - slow access
 - aggravated by the state of processor technology at the time
 - associative search impossible; accessed with slower hash function
 - delays in processing (only so many functional units, arbitration both for PEs and storing of result, long wires)

Dataflow Example

\[A[j + i*i] = i; \]
\[b = A[i*j]; \]
Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];
Example to Illustrate the Memory Ordering Problem

\[A[j + i*i] = i; \]
\[b = A[i*j]; \]

Load-store ordering issue

Partial Solutions

Solutions led away from pure dataflow execution

Data representation in memory

- **I-structures:**
 - write once; read many times
 - early reads are deferred until the write

- **M-structures:**
 - multiple reads & writes, but they must alternate
 - reusable structures which could hold multiple values
Partial Solutions

Local (register) storage for back-to-back instructions

Frames within the token store for a sequence of instructions
 • example: each frame stores the data for one iteration or one thread
 • not have to search entire token store (use an offset to the frame)

Physically partition token store & place each partition with a PE
 • dataflow execution within coarse-grain threads