Advanced Caching Techniques

Approaches to improving memory system performance

• eliminate memory accesses/operations
• decrease the number of misses
• decrease the miss penalty
• decrease the cache/memory access times
• hide memory latencies
• increase cache throughput
• increase memory bandwidth

New techniques address particular components of memory system performance

Handling a Cache Miss the Old Way

(1) Send the address & read operation to the next level of the hierarchy

(2) Wait for the data to arrive

(3) Update the cache entry with data*, rewrite the tag, turn the valid bit on, clear the dirty bit (if data cache)

(4) Resend the memory address; this time there will be a hit.

* There are variations:
 • get data before replace the block
 • send the requested word to the CPU as soon as it arrives at the cache (early restart)
 • requested word is sent from memory first; then the rest of the block follows (requested word first)

How do the variations improve memory system performance?
Non-blocking Caches

Non-blocking cache (lockup-free cache)
- allows the CPU to continue executing instructions while a miss is handled
- some caches allow only 1 outstanding miss (“hit under miss”)
- some caches have multiple misses outstanding (“miss under miss”)
- miss status holding registers (MSHR)
 - hardware structure for tracking outstanding misses
 - physical address of the block
 - which word in the block
 - destination register number (if data)
 - mechanism to merge requests to the same block
 - mechanism to insure accesses to the same location execute in program order

How do non-blocking caches improve memory system performance?
Non-blocking Caches

in-order processors

\[
\begin{align*}
\text{lw} & \ \$3, \ 100(\$4) & \text{in execution, cache miss} \\
\text{add} & \ \$2, \ \$3, \ \$4 & \text{consumer waits until the miss is satisfied} \\
\text{sub} & \ \$5, \ \$6, \ \$7 & \text{independent instruction waits for the add}
\end{align*}
\]

out-of-order processors

\[
\begin{align*}
\text{lw} & \ \$3, \ 100(\$4) & \text{in execution, cache miss} \\
\text{sub} & \ \$5, \ \$6, \ \$7 & \text{independent instruction can execute during the cache miss} \\
\text{add} & \ \$2, \ \$3, \ \$4 & \text{consumer waits until the miss is satisfied}
\end{align*}
\]

Victim Cache

Victim cache

- small fully-associative cache
 - contains the most recently replaced blocks of a direct-mapped L1 cache
 - if L1 cache miss & victim cache hit, swap the direct-mapped block and victim cache block
 - if both miss, L1 block goes to victim cache
- alternative to 2-way set-associative cache

How do victim caches improve memory system performance?

Why do victim caches work?
Sub-block Placement

Divide a block into sub-blocks

<table>
<thead>
<tr>
<th>tag</th>
<th>I data</th>
<th>V data</th>
<th>V data</th>
<th>I data</th>
</tr>
</thead>
<tbody>
<tr>
<td>tag</td>
<td>I data</td>
<td>V data</td>
<td>V data</td>
<td>V data</td>
</tr>
<tr>
<td>tag</td>
<td>V data</td>
<td>V data</td>
<td>V data</td>
<td>V data</td>
</tr>
<tr>
<td>tag</td>
<td>I data</td>
<td>I data</td>
<td>I data</td>
<td>I data</td>
</tr>
</tbody>
</table>

- **sub-block** = unit of transfer on a cache miss
- **valid bit/sub-block**
- misses:
 - block-level miss: tags didn't match
 - sub-block-level miss: tags matched, valid bit was clear
 + the transfer time of a sub-block
 + fewer tags than if each block was the size of a subblock
 - less implicit prefetching

How does sub-block placement improve memory system performance?

Pipelined Cache Access

Pipelined cache access
- simple 2-stage pipeline
 - access the cache
 - data transfer back to CPU
 - tag check & hit/miss logic with the shorter of the two stages

How do pipelined caches improve memory system performance?
Trace Cache

Contains instructions from the *dynamic* instruction stream

- fetch statically noncontiguous instructions in a single cycle, called a *trace*
- limit on # basic blocks & # instructions in a trace

- instructions may appear more than once
- accessed with PC & prediction bit
- traces can contain decoded instructions
 - particularly useful for CISC architectures

Trace Cache

Advantages/disadvantages of a trace cache

- (+)
- (-)
- (-)

Effect on memory system performance?
Cache-friendly Compiler Optimizations

Exploit spatial locality

- **schedule for array misses**
 - hoist first load to each cache block

Improve spatial locality

- **group & transpose**
 - collects data from different vectors or structures that are accessed together & places them contiguously in memory

- **loop interchange**
 - so inner loop follows memory layout

Improve temporal locality

- **loop fusion**
 - put computations on the same portion of an array from separate loops into one loop

- **tiling (also called blocking)**
 - do all computation on a small block of an array that will fit in the cache

Tiling Example

/* before */
for (i=0; i<n; i=i+1)
 for (j=0; j<n; j=j+1) {
 r = 0;
 for (k=0; k<n; k=k+1) {
 r = r + y[i,k] * z[k,j];
 }
 x[i,j] = x[i,j] + r;
 }

/* after */
for (jj=0; jj<n; jj=jj+T)
for (kk=0; kk<n; kk=kk+T)

 for (i=0; i<n; i=i+1)
 for (j=jj; j<min(jj+T-1,n); j=j+1) {
 r = 0;
 for (k=kk; k<min(kk+T-1,n); k=k+1) {
 r = r + y[i,k] * z[k,j];
 }
 x[i,j] = x[i,j] + r;
 }
Memory Banks

Interleaved memory:
- multiple memory banks
- word locations are assigned across banks
- **interleaving factor**: number of banks
- send a single address to all banks at once

<table>
<thead>
<tr>
<th>Word Address</th>
<th>Bank 0 Word Address</th>
<th>Bank 1 Word Address</th>
<th>Bank 2 Word Address</th>
<th>Bank 3 Word Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring 2012 CSE 471 - Advanced Caching Techniques

Memory Banks

Interleaved memory:
- get more data for one transfer
 - data is probably used *(why?)*
- larger DRAM chip capacity means fewer banks
- power issue

Effect on memory system performance?
Memory Banks

Independent memory banks

• different banks can be accessed at once, with different addresses
• allows parallel access, possibly parallel data transfer
• multiple memory controllers & separate address lines, one for each access
 • different controllers cannot access the same bank
• less area than dual porting

Effect on memory system performance?

Advanced Caching Techniques

Approaches to improving memory system performance

• eliminate memory accesses
• decrease the number of misses
• decrease the miss penalty
• hide memory latencies
• increase cache throughput
• increase memory bandwidth
Other Techniques

Hardware or compiler-based prefetching (decreases misses)
Coupling a write-through memory update policy with a write buffer (eliminates store ops/hides store latencies)
Merging requests to the same cache block in a non-blocking cache (hide miss penalty)
TLB (reduce page fault time (penalty))
Cache hierarchies (reduce miss penalty)
Virtual caches (reduce L1 cache access time)
Wider bus (increase bandwidth)