Von Neumann Execution Model

Fetch:
- send PC to memory
- transfer instruction from memory to CPU
- increment PC

Decode & read ALU input sources

Execute
- an ALU operation
- memory operation
- branch target calculation

Store the result in a register or memory
Von Neumann Execution Model

Program is a linear series of addressable instructions
 • next instruction to be executed is pointed to by the PC
 • send PC to memory
 • next instruction to execute depends on what happened during the
 execution of the current instruction

Instruction operands reside in a centralized, global processor memory
 (GPRs)
Dataflow Execution Model

Instructions are already in the processor:

- Operands arrive from a producer instruction via a network
- Check to see if all an instruction's operands are there

Execute
- an ALU operation
- memory operation
- branch target calculation

Send the result
- to the consumer instructions or memory
Dataflow Execution Model

Execution is driven by the availability of input operands
- operands are consumed
- output is generated
- no PC

Result operands are passed directly to consumer instructions
- no register file
Dataflow Computers

Motivation:
- exploit instruction-level parallelism on a massive scale
- more fully utilize all processing elements

Believed this was possible if:
- expose instruction-level parallelism by using a functional-style programming language
 - no side effects; only restrictions were producer-consumer
- scheduled code for execution on the hardware greedily
- hardware support for data-driven execution
Dataflow Execution

All computation is **data-driven**.
- binary is represented as a directed graph
 - nodes are operations
 - values travel on arcs

![Diagram of a + b operation](image)

- WaveScalar instruction

```
+-----------------+-----------------+
| opcode          | destination1    |
| destination2    |
```

Spring 2009 CSE 471 - Dataflow Machines
Dataflow Execution

Data-dependent operations are connected, producer to consumer
Code & initial values loaded into memory
Execute according to the dataflow firing rule
 • when operands of an instruction have arrived on all input arcs, instruction may execute
 • value on input arcs is removed
 • computed value placed on output arc

+
Dataflow Example

\[
A[j + i*i] = i;
\]

\[
b = A[i*j];
\]
Dataflow Example

\[A[j + i*i] = i; \]

\[b = A[i*j]; \]
Dataflow Example

\[A[j + i\times i] = i; \]

\[b = A[i\times j]; \]
Dataflow Execution

Control
- steer (ρ)

merge (ϕ)

- convert control dependence to data dependence with value-steering instructions
- execute one path after condition variable is known (steer) or
- execute both paths & pass values at end (merge)
WaveScalar Control

\[\rho \text{ (steer)} \]

\[\phi \text{ (merge)} \]

\[
\text{if } (A > 0) \\
\quad \text{D} = C + B; \\
\text{else} \\
\quad \text{D} = C - E; \\
\quad \text{F} = D + 1;
\]
Dataflow Computer ISA

Instructions
• operation
• names of destination instructions

Data packets, called Tokens
• value
• tag to identify the operand instance & match it with its fellow operands in the same dynamic instruction instance
 • architecture dependent
 – instruction number
 – iteration number
 – activation/context number (for functions, especially recursive)
 – thread number
• Dataflow computer executes a program by receiving, matching, computing & sending out tokens.
Types of Dataflow Computers

static:
 • one copy of each instruction
 • no simultaneously active iterations, no recursion
Types of Dataflow Computers

dynamic
- multiple copies of each instruction
- better performance
- gate counting technique to prevent instruction explosion

k-bounding
- extra instruction with K tokens on its input arc; passes a token to 1st instruction of loop body
- 1st instruction of loop body consumes a token (needs one extra operand to execute)
- last instruction in loop body produces another token at end of iteration
- limits active iterations to k
Prototypical Early Dataflow Computer

Original implementations were centralized.

Performance cost
- large token store (long access)
- long wires
- arbitration both for PEs and storing of result
Problems with Dataflow Computers

Language compatibility
- dataflow cannot guarantee a correct ordering of memory operations
- dataflow computer programmers could not use mainstream programming languages, such as C
- developed special languages in which order didn’t matter

Scalability: large token store
- side-effect-free programming language with no mutable data structures
 - each update creates a new data structure
 - 1000 tokens for 1000 data items even if the same value
- aggravated by the state of processor technology at the time
 - delays in processing (only so many functional units, arbitration delays, etc.) meant delays in operand arrival
 - associative search impossible; accessed with slower hash function
Dataflow Example

\[A[j + i*i] = i; \]
\[b = A[i*j]; \]
Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];
Example to Illustrate the Memory Ordering Problem

\[
A[j + i \times i] = i;
\]

\[
b = A[i \times j];
\]
Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

Load-store ordering issue
Partial Solutions

Solutions led away from pure dataflow execution

Data representation in memory

• **I-structures**:
 • write once; read many times
 • early reads are deferred until the write

• **M-structures**:
 • multiple reads & writes, but they must alternate
 • reusable structures which could hold multiple values
Partial Solutions

Local (register) storage for back-to-back instructions

Frames for distinct sequential instruction execution
 • create “frames”, each of which stored the data for one iteration or one thread
 • not have to search entire token store (offset to frame)
 • like having dataflow execution among coarse-grain threads rather than instructions

Physically partition token store & place each partition with a PE