& 1ralaonnm homes ?l":ﬁl‘lh‘l!‘ﬁ @ suarah ?mnhr.'r [T1= *:mm intd
" "

A Tour of the Pentium(R) Pro Processor
Microarchitecture

Introduction

Achieving twice the performance of a PentivmiR) provessor while being manufactured on the same
semiconductor process was one of the Pentium Pro processor’s primary goals. Using the same process as
a volume production processor practically assured that the Pentium Pro processor would be
manufucturahle, but it meant that Intel had to tocus on an improved microarchitecture for ALL of the
performance sains. This guided tour describes how multiple architectural techniques - some proven in
mainframe computers, some proposed in academia and some we innovated ourselves - were carcfully
interwoven, modified, enhanced, toned and implemented to produce the Pentium Pro microprocessor,
Thiz unique combination of architectural feamres, which [ntel deseribes as Dynamic Execution, enabled
the first Pentinm Pro processor silicon to exceed the original performance goal,

Building from an already high platform

The: Pentium processor set an impressive performance standard with its pipelined, superscalar
microarchitecture. The Pentium processor's pipelined implementation nses five stages 1o extract high
throughput from the silicon - the Pentivin Pro processor moves to a decoupled, | 2-stage, superpipelined
implementacion, trading less work per pipestage for mere stages, The Pentium Pro processor reduced its
pipestage time by 33 percent, compared with a Pentium proeessor, which means that from a
sermiconduclor manufacturing process (Lo, transistor speed) perspective a 133MHz Pentium Pro
processor and a [O0OMHz Pentium processor are cquivalent.

The Pentium processor’s superscalar microarchitecture, with is ability to execute two instruclions per
clock. would be difficult to caceed without a nesw approach. The new approach usesd by the Pentiam Pro
processor removes the constraint of linear instruction sequencing between the traditional "fetch” and
“exerute” phases, and opens up a wide instruction window using an instruction poel. ‘This approach
allows the “exceute” phase of the Pentium Pro processor to have much more visibility into the progrium's
instruction stream so that better scheduling may take place. I requires the instruction "fetch/decode’
phase of the Penliwm Pro processor to be much more intelligent in terms of predicting program flow.
Optimired seheduling requires the fundamental "execule” phase to be replaced by decoupled
"dispatchiexecute” and “retire” phases. This allows instructions to be started in any order but alwavs be
completed in the original program order. The Pentiom Pro processor is implemented as three
independent engines coupled with an instruction pool as shown in Figure | helow.

Dispaich
Execute

Fetch/
Decode

Unat

Retire
Unat

Unit

Instruction

Pool

Figure 1. The P8 is implemented as three independent engines
that communicate using an inslruction pool,

What is the fundamental problem to solve?

Befors starting our tour on how the Pentium Pro processor achicves its high performance 1 i irmportant
b note why this three- independent-engine approach was taken, A fundamental fact of loday’s
microprocessor implementations must he appreciated; mosl CPU cores are not fully utilized. Consider
the code fragment in Figure 2 below:

r1 <= mem [ri] & Instruction 1«
r2<=rl+r2 M Instruction 2 «
rh¢=r5+1 f# Instruclion 3 %
rh <= rb-rl M Instruction 4 =

Figure 2. A typical code fragment.

The first instruction in this example is o load of r] that, ar run time, causes a cache miss. A traditional
CPU core must wai for ils bus interface unit 1o read this data from main memory and return it before
moving on to instraction 2. This CPU stalls while waiting for this data and is thus being under-utilized.

While CPU specds have increased 10-fold over the past 10 years, the speed of main memory devices has
only increased by 60 percent. This increasing memory latency, relative to the CPL core specd, 15 a
fundamental problem that the Pentium Pro processor set out to solve. One approach would be to place
ihe hurdon of this problem onto the chipset but a high-performance CPLU that needs very high speed.
specialized, support components is not a good solulion for 2 volume production system.

A brute-foree approach to this problem is, of course, increasing the size of the L2 cache o reduce the
fiiss ratio, While effective, his is another n;_:_s;p{;]]-;;i'n,r: solucion. (_t".g.pl_'l_:iun_'_n.' Lfﬁﬂﬂid.{‘]'i.l'jg Lhe .*i:'IEEd

requirernents of today’s L2 cuche SRAM components. Instead. the Pentium Pro processor is designed
fram an overall system implemenlabion perspective which will allow higher performance systems to be
designed with cheaper memory subsystem designs,

Pentium Pro processor takes an innovative approach

To avoid this memory latency problem the Pentium Pro processor “looks-ahead" into its instinction (sl
at subscquent instructions and will do useful work rather than be stalled. 1o the example in Figare 2,
mstruction 2 15 not executable since it depends upon the result of mstruction 1; however hoth
mstruchions 3 and 4 arc exccutable. The Pentium Pro processer speculatively executes instructions 3 and
A, W cannot commit the resalts of this speculative cxcoution o permancot machine state (1.e., the
proserammmer-visible regisiers) since we must maintain the orginal program onder, so the results are
inslead stored back in the instruction pool awailing in-order retiremenl. The core executes instruclions
depending upon their readiness (o execute and nol on their original progeam order (i1 s o e dataiow
engrine]. This approach has the side effect that instructions are tvpically executed oul-of-omler,

The cache miss on instruction [will take many internal clocks, so the Pentium Pro processor core
continues to look ahead for other instructions that could be speculatively exccuted and is typically
looking 20 to 30 instructions in frond of the program counler, Within this 20- 10 30- instruction window
there will be, on average, ve branches that the felchélecods andl must correctly prasdict i the
dispalchfegecute unit is 10 do useful waork. The sparse register ser of an Inte] Architectore [TA) processor
will creale many False dependencies on repiaters so the dispatch/execute unit will rename the 1A
regiaters wo enable additional forward progress. The retire unit owns the physical 1A register set and
results are only committed to permanent machine state when it remeves completed mstructions Mrom the
ool in original program order.

Dynamic Txecution technology can be summarized as optimally adjusting instruction execution by
predicting program tlow, analysing the program’s dataflow graph to choose the best order to execute the
instructions, then having the ability to speculatively exceute mstmctions in the preferred erder. The
Penlium Pro processor dynamically adjusts 15 work, as defined by the incoming instruction stream, to
iz overall execulion Hime.

Overview of the stops on the tour

Wee have previewsd how the Pentium Pro processor takes an innovative approach o overcome a key
syslem constrainl, Now ler’s take a closer ook inside the Pentium Pre processor to understand how it
implemenls Dynamic Bxecution. Figure 3 below extends the basic block diagram to include the cache
and memory inlerfaces - these will also be stops on our wur. We shall rravel dewn the Pentiom Pro
processor pipeling o understand the role of each unit:

O The FETCH/DECODE unit; Ap in-order unit that takes us inpul (he user program insiruction
stream from the instruction cache, and decodes them inlo a series o micro-operations {uops) that
represent the datallow of that instruetion stream, The program pre-feich s ilsell speculative,

O The DISPATCH/EXECUTE unil: An out-of-order unit that accepts the dataflow stream, schedules
excculion ol the uops subject to data dependencies and resource availability and temporarily stores
Ihies ressulls of these specalative exections.

O The RETIRE unit: An in-order unit that knows how and when to commit ("retire”) the temporary,

speculative resulls w permanent architectural state.

O The BUS INTERFACE unit: A partially ardered unit responsible for connecting the three imternal

units 1o the real world, The bus inlerface unit communicates directly with the

2 cache supporting

up Lo four concarrent cache accesses. The bus interface unit also controls a transaction bus, with

MESI snooping protocol. ke system memory.

Systern Bus L2 Cache

Busz Interface TTnit

L1 ICachs L1 DiCache

epateh
Execute
LInit

Fetoh!
Dhecode
[Tnit

o

Instruction
Pool

-

Figure 5. The thraa core engines inderface with the mentery
awhpeafon wsing YEATK unijied cockes,

Tour stop #1: The FETCH/DECODE unit.

Figure 4 shows a more detailed view of the fetch/decode unit:

From BITT

N
rm ache }4 Next_IP BIU - Bus Interface Unit
——— = : e I - Instruction D ecoder
* f BTE - Branch Tasgel Buife
KIS - Llicemcode Instruction
- BETE 5 BguenCET

FAT - Begister Alias Table
RiOB - ReOrder Buffer

ID

, g NS
(%3)
R . .\ - %‘ -
Alloeate nstruction

Poel (ROD)

Figure ! Looking inslde the FetehDecode Tnit

Let's starl the toor at the Instroction Cache {(1Cache), a nearby place for instructions (o reside so thal
they can be looked up guickly when the CPU needs them. The Next_IP unit provides the 1Cache index.
based on inputs from the Branch Target Bulfer (BTR), trap/interrupt status, and branch-misprediction
indications from the inleger execution section. The 512 entry BTB uses an extension of Yeh's algorithm
{o provide greater than 90 percent prediction accuracy. For now, let's assume that nothing exceptional is
happening, and that the BTB is correct in its predictions. {The Pentiom Pro processor integrates features
that allow for the rapid recovery from a mis-prediction, bul mare of that later,)

The ICache fetches the cache line corresponding to the index from the Next_IP, and the next line, and
presents 16 aligned byles to the decoder. Two lines are read becanse the TA instruction stream is
hyle-aligned, and code often branches to the middle or end of a cache line, This part of the pipeline takes
three clocks, including the time to rotate the prefetched byles so that they are justified for the instruction
decenders (1130, The beginning and end of the IA instructions are marked.

Three parallel decoders accept this stream of marked bytes, and proceed to find and decode the 1A
instructions contained (herein, The decoder converts the LA instructions into triadic vops (lwa logical
sources, one logical destination per uop). Most LA instmctions are converted directly inlo single uops,
some instructions are decoded into one-to-four nops and the complex instructions require microcode (the
hox labeled MTS in Figure 4, this microcode is just a set of preprogrammed sequences of normal uops).
Some instructions, called prefix bytes, modify the following instruction giving the decoder a lot of work
to do. The uops are enquened, and sent to the Register Alias Table (RAT) unit, where the logical
1A-based register references are converied into Pentinm Pro processor physical register references, and
to the Allocator stage, which adds status information to the vops and enters them into the imstruction
pool. The instruction poel is implemented as an array of Content Addressable Memory called the
ReCrder Buller (ROR).

We have now reached the end of the in-order pipe.

Tour stop #2: The DISPATCH/EXECUTE unit

The dispaich unit selects uops from the instruction pool depending upon their status. If the status
indicates that a uop has all of its operands then the dispatch unit checks to see if the execution resource
necded by that wop is also available, If both are true, it removes that uop and sends it to the resource
where it is executed. The results of the vop are later returned to the pool, There are five ports on the
Reservation Station and the multiple resources are accessed as shown in Figure 5 below;

RS E2 - Feservation Stalion
|F'Eﬂ ENT - Execution Uit
E [FETJ - Fleating Peint EXT
Port O :: i o IEU - Integer EU
: TET - Jump EU
ToArom -el—— IEU A3 - Address Generation Unit
Instruction Port 1| IEU ROB - ReOrder Buffer
Pool (ROB) —
AGU |
Port 3,4__-_""’&T=Ti|_. v

Figura 5: Looking inside the Dispaich/Exeente Unit

The Pentium Pro processor can schedule at a peak rate of 5 uops per clock, one to cach resource port,
hut & sustained rate of 3 uops per clock is typical. The activity of this scheduling process is the
quintessential out-of-order process: uops are dispaiched to the execution resources strictly according lo
dataflow constraints and resource availability, without regard to the original ordering of the program.

Note that the actual algorithm craplayed by this execution-scheduling process is vitally important to
performance. If only ene uop per resource becomes data-ready per clock cycle, then there is no choice,
Bul if several are available, which should it choose? It could choose randomly, or
first-come-first-served. Ideally it would choose whichever uop would shorten the overall datatlow graph
of the program being run. Since there is no way to really know that at run-time, it approximates by using
a pseuda FIFO scheduling algorithm favoring back-to-back uops.

Nove that many of the uops are branches, because many 1A instructions are branches. The Branch Target
Buffer will correctly predict most of these branches but it can't cormectly predict them all, Consider a
BTB that's correctly predicting the backward branch at the bottom of a loop: eventually that loop 15
going to terminate, and when it does, that branch will be mispredicted. Branch uops are lagged {in the
in-order pipeline) with their fallthrough address and the destination that was predicted for them, When
the branch executes, what the branch actually did is compared againat what the prediction hardware said
it would do. If those coincide, then the branch eventually retires, and most of the speculatively executed
work behind it in the instruction pool is good.

But if they do not coincide (a branch was predicled as taken but fell through, or was predicled as not
taken and it actually did Lake the branch) then the Jump Execution Unit (JELU) changes the slalus of all
af the uops behind the branch to remove them from the instruction pool. In that case the proper branch

destination js provided oo the BTH which restarts the whole pipeline from (he new larger addness,

Tour stop #3: The RETIRE unit

Figure 6 shows a more detailed view of the retire unit:

|

| Tofram Dlache
R . D

ES - Beservahon Stahion
MIT - Memory Interface Tl
EEF - Eetirement Begister File

RRF

From Ta '

Tnstriction Pool

Figure 6t Looking ingide the Retire Unit

Thi tetire unit is also checking the status of vops in the instruction peol - itis Tooking for uops that have
exccuted and can be removed from the pool. Once removed, the uops” original architectural target is
wrilien as per the original 1A instruction. The retirement unit must not only notice which vops are
complete, it must also re-impose the original program order on them, It must also do this in the face of
interrupts, traps, faults, breakpoints and mis- predictions,

There are two clock cyeles devoted to the retirement process, The retirement unit must first read the
instruction pool to find the polential candidates for retirement and determine which of these candidates

are next in the onginal progeam order. Then it writes the results of this cyele's retirements (o both the
Instruction Pool and the RRE. The retirement unit is capable of retiring 3 nops per clock,

Tour stop #4: BUS INTERFACE unit

Figure 7 shows g more detailed view of the bus interface unit:

MOB - Memory Order Bubfer

{ = o, 1
E Sye Mem —y AR AGT - Address Generation it
b e Mem ROB - ReOrder Buffer
o At g
E LZ Carche i—- IF Diacke
__________ Toffram
From ! [netruckion
ACTT Fool (ROE)

Figure I: Looking ingide the Bus Interface Unit

There are two types of memory aceess: loads and stores, Loads only need to specify the memary address
1o be accessed, the width of the data being retrieved, and the destination register, Loads are encoded into
a single uop. Stores need to provide a memory address, a data width, and the data (o be written. Stores
therefore require iwo uops, one to generate the address, one to generate the data. These uops arc
scheduled independently to maximize their concurrency, but must re-combine in the store bulfer for the

atore Lo complate.

Stores are never performed speculatively, there being no transparent way to undo them. Stores are also
never re- ordered among themselves. The Store Buffer dispatches a store only when the store has bolh
its address and its data, and there arc no older stores awaiting dispalch.

What impact will a speculative core have on the real world? Early in the Pentium Pro processor project,
we studied the importance of memory uccess reordering. The basic conelusions were as follows:

© Stores muat be constrained from passing other stores, for only a small impact on performance.
© Stores can be constrained from passing loads, for an inconsequential performance loss.
O Constraining loads from passing other loads or from passing stores creates a significant impact on

performance.

S0 what we need is a memory subsystem architecture thal allows loads to pass stores. And we need to
muke it possible for loads to pass loads. The Memaory Order Buffer (MOB) accomplishes this task by
acting like a reservalion station and Re-Order Buffer, in that it holds suspended loads and stores,
redispatching them when the blocking condition (dependency or resource) disappears.

Tour Summary

Tt is the unique combination of improved branch prediction (to offer the core many instructions), data
Now analysis (choosing the best instructions 1o operate upon), and speculative execution (ciecuting
instructions in the preferred order) thal enables the Pentium Pro processer to deliver twice the
performance of a Pentium processor on the same semiconductor manufacturing process, This unique
combination is called Dynamic Execution and it is similar in impact a3 "Superscalar” was to previous
generation Intel Architecture processors.

And while our architects have been honing the Penlium Pro processor microarchitecture, our silicon
technologists have been working on the next Intel process - this 0.35 micron process will enable fulur:
Pentium Pro Pracessor CPU core speeds in excess of 200MEHz.

