WaveScalar: the Executive Summary

Dataflow machine

- · good at exploiting ILP
- dataflow parallelism + traditional coarser-grain parallelism
 - · cheap thread management
- low operand latency because of a hierarchical organization
- memory ordering enforced through wave-ordered memory
 - no special languages

Spring 2007 CSE 471 - WaveScalar

WaveScalar

Additional motivation:

- increasing disparity between computation (fast transistors) & communication (long wires)
- · increasing circuit complexity
- · decreasing fabrication reliability

Spring 2007 CSE 471 - WaveScalar 2

A phenomenal success today. But in 2016?

Performance

Centralized processing & control Long wires

e.g., operand broadcast networks

8 Complexity

40-75% of "design" time is design verification

Operation
Ope

1 flaw -> paperweight

Spring 2007

CSE 471 - WaveScalar

3

WaveScalar's Microarchitecture

Good performance via distributed microarchitecture ©

- · hundreds of PEs
- organized hierarchically for fast communication between neighboring PEs
- dataflow execution no centralized control
- short point-to-point (producer to consumer) operand communication
- scalable

Low design complexity through simple, identical PEs ©

· design one & stamp out thousands

Defect tolerance ©

· route around a bad PE

Spring 2007

CSE 471 - WaveScalar

WaveScalar Processor

Long distance communication

- dynamic routing
- grid-based network
- 2-cycle hop/cluster

Spring 2007

CSE 471 - WaveScalar

9

Whole Chip

- · Can hold 32K instructions
- Normal memory hierarchy
- Traditional directory-based cache coherence
- ~400 mm² in 90 nm technology
- 1GHz.
- ~85 watts

Spring 2007

CSE 471 - WaveScalar

WaveScalar Instruction Placement

Place instructions in PEs to maximize data locality & instruction-level parallelism.

- Instruction placement algorithm based on a performance model that captures the important performance factors
- · Carve the dataflow graph into segments
 - a particular depth to make chains of dependent instructions that will be placed in the same pod
 - a particular width to make multiple independent chains that will be placed in different, but near-by pods
 - called DAWG ('Deep and Wide Graph' Placement)
- · Snakes segments across PES in the chip on demand
- K-loop bounding to prevent instruction "explosion"

Spring 2007 CSE 471 - WaveScalar 12

Waves are loop-free sections of the dataflow graph Each dynamic wave has a wave number Wave number is incremented between waves Ordering memory in a whole program: • wave-numbers • sequence number within a wave

Multithreading the WaveCache

Architectural-support for WaveScalar threads

- instructions to start & stop memory orderings, i.e., threads
- memory-free synchronization to allow exclusive access to data (thread communicate instruction)
- fence instruction to force all previous memory operations to fully execute (to allow other threads to see the results of this one's memory ops)

Combine to build threads with multiple granularities

- coarse-grain threads: 25-168X over a single thread; 2-16X over CMP, 5-11X over SMT
- fine-grain, dataflow-style threads: 18-242X over single thread
- a demonstration that one can combine the two in the same application (equake): 1.6X or 7.9X -> 9X

Spring 2007 CSE 471 - WaveScalar 25

Creating & Terminating a Thread

Spring 2007 CSE 471 - WaveScalar

13

Building the WaveCache

RTL-level implementation

- some didn't believe it could be built in a normal-sized chip
- some didn't believe it could achieve a decent cycle time and loaduse latencies
- Verilog & Synopsis CAD tools

Different WaveCache's for different applications

- 1 cluster: low-cost, low power, single-thread or embedded
 - 42 mm² in 90 nm process technology, 2.2 AIPC on Splash2
- 16 clusters: multiple threads, higher performance: 378 mm², 15.8 AIPC

Board-level FPGA implementation

· OS & real application simulations

Spring 2007 CSE 471 - WaveScalar 31