Architectural Implications of Brick and Mortar Silicon Manufacturing

Martha Mercaldi Kim
Mark Oskin
University of Washington

Mojtaba Mehrara
Todd Austin
University of Michigan
Cost of Production

- Standard Cell ASIC

Production Cost vs. Product Volume
Cost of Production

- Standard Cell ASIC
- FPGA

Product Volume

Production Cost

[www.edn.com]
Cost of Production

- Standard Cell ASIC
- FPGA
- Brick & Mortar Goal

Production Cost vs. Product Volume
Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions
Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions
Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions

2. “Mortar”
 - Mass-produced ASIC
 - Standard interface
 - Single, interconnect function
Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions

2. “Mortar”
 - Mass-produced ASIC
 - Standard interface
 - Single, interconnect function

3. Assembly
 - Alignment
 - e.g. robotics, fluidic
 - Bonding
 - e.g. flip-chip, proximity
Benefits of Brick and Mortar

- **Chip manufacture**: mask-free, fab-free, improved yields
- **Chip performance**: mostly ASIC
- **Chip design**: uses today’s SoC design flow
Why Should Architects Care?

• Good architecture essential for viability
 • Brick function and form-factor
 • Inter-brick interconnect design
Outline

• Brick and Mortar Chips
 • Definition
 • Potential
 • Architectural Questions

• Brick and Mortar Architecture
 • Bricks
 • Interconnect

• Brick and Mortar Assembly
 • Options
 • Interaction with architecture
Brick Form Factor

- Each brick...
 - is square
 - has 15% of area reserved for extra circuitry
 - has one surface covered with flipchip pads

flipchip pad:
25 um pitch, 2.5 Gbps
Brick Architecture

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Area (um²)</th>
<th>Max Freq. (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 1.1 Physical Layer</td>
<td>2,201</td>
<td>2941</td>
</tr>
<tr>
<td>JPEG Decoder</td>
<td>625,457</td>
<td>629</td>
</tr>
<tr>
<td>RISC Core + 256K Cache</td>
<td>3,111,025</td>
<td>1087</td>
</tr>
</tbody>
</table>
Multiple Brick Sizes

Functional Block

Interconnect Interface

Multiple Brick Sizes

.5 mm

1 mm

2 mm
Brick Size Selection

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Circuit</th>
<th>Freq. Range at Brick Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (um²)</td>
<td>Max Freq. (MHz)</td>
</tr>
<tr>
<td>256 K SRAM (single-ported)</td>
<td>2,729,344</td>
<td>2315</td>
</tr>
<tr>
<td>JPEG Decoder</td>
<td>625,457</td>
<td>629</td>
</tr>
<tr>
<td>VGA/LCD Controller</td>
<td>4,301</td>
<td>1219</td>
</tr>
</tbody>
</table>

- Smallest brick to fit circuit, unless bandwidth **severely** constrained
Outline

• Brick and Mortar Chips
 • Definition
 • Potential
 • Architectural Questions

• Brick and Mortar Architecture
 • Bricks
 • Interconnect

• Brick and Mortar Assembly
 • Options
 • Interaction with architecture
Interconnect Dilemma

- **General purpose interconnect facilities**
 - Communication known at design time \(\rightarrow\) configurable wires
 - Dynamic communication \(\rightarrow\) packet-switched net
Outline

• Brick and Mortar Chips
 • Definition
 • Potential
 • Architectural Questions

• Brick and Mortar Architecture
 • Bricks
 • Interconnect

• Brick and Mortar Assembly
 • Options
 • Interaction with architecture
Brick and Mortar Chips

1. Bricks
 - Mass-produced ASICs
 - Standard interface
 - Fixed set of functions

2. “Mortar”
 - Mass-produced ASIC
 - Standard interface
 - Single, interconnect function

3. Assembly
 - Alignment
 - e.g. robotics, fluidic
 - Bonding
 - e.g. flip-chip, proximity
Assembly Alternatives

- Alignment
 - Robotic
 - Self-Assembly
 - Martha + tweezers
 - ...

- Bonding
 - Flip-chip
 - Proximity
 - ...

Assembly Alternatives

- **Alignment**
 - Robotic $$$, but fast
 - Self-Assembly $, but slow
 - Martha + tweezers
 - ...

- **Bonding**
 - Flip-chip
 - Proximity
 - ...

Assembly Alternatives

- **Alignment**
 - Robotic: $$$, but fast
 - Self-Assembly: $, but slow
 - Martha + tweezers
 - ...

- **Bonding**
 - Flip-chip
 - Proximity
 - ...
Assembly Alternatives

- **Alignment**
 - Robotic: $$$, but fast
 - Self-Assembly: $$, but slow
 - Martha + tweezers
 - ...

- **Bonding**
 - Flip-chip: medium-density, but more robust connection
 - Proximity: high-density
 - ...

...
Assembly Alternatives

• **Alignment**
 - Robotic $$$, but fast
 - Self-Assembly $, but slow
 - Martha + tweezers
 - ...

• **Bonding**
 - Flip-chip medium-density, but more robust connection
 - Proximity high-density
 - ...

Fluidic Self Assembly

- Template - brick communication via proximity communication
 - Brick type check, BIST, speed grade
- Polymer on template can grip or eject bricks
Alignment:
Fluidic Self Assembly

- Washington EE experimental system
Assembly Time v. Number of Bricks

- Statistical simulator driven by experimentally derived rates of assembly and disassembly
Assembly Time v. Number of Bricks

- 10 bricks: 75 seconds
- 20 bricks: 250 seconds

Design Size vs. Seconds / Chip
Assembly Time v. Kinds of Bricks

![Graph showing assembly time in seconds compared to the number of kinds of bricks.](image)
Assembly Time v. Kinds of Bricks

Seconds / Chip vs Number of Kinds of Bricks

- 25 bricks
- 16 bricks
- 9 bricks
- 4 bricks
- 1 bricks
Assembly Time v. Kinds of Bricks

Seconds / Chip vs. Number of Kinds of Bricks

- 25 bricks
- 16 bricks
- 9 bricks
- 4 bricks
- 1 brick
Assembly Time v. Kinds of Bricks

The chart illustrates the assembly time in seconds per chip as a function of the number of kinds of bricks. Different line colors represent different numbers of bricks:

- Red: 25 bricks
- Dark blue: 16 bricks
- Medium blue: 9 bricks
- Green: 4 bricks
- Yellow: 1 brick

The X-axis represents the number of kinds of bricks, while the Y-axis shows the seconds per chip. As the number of kinds of bricks increases, the assembly time also increases significantly.
Assembly Time v. Brick Arrangement Slack

Seconds / Chip

"Slack" in Brick Arrangement
Evaluating Slack: Design Size

![Graph showing evaluation of slack in design size]

- *25 bricks*
- *16 bricks*
- *9 bricks*
- *4 bricks*
- *1 brick*

Seconds per Chip vs "Slack" in Brick Arrangement
Evaluating Slack: Brick Kinds

![Graph showing the relationship between "Slack" in Brick Arrangement and Seconds/Chip for 1, 2, 3, 4, and 5 kinds of bricks.](graph.png)
Evaluating Slack: Brick Kinds
Assembly and Architecture

- **Architecture can assist assembly by**
 - Reducing the number of kinds of bricks
 - i.e., two brick kinds v. one slightly reconfigurable circuit
 - Accommodating variable assemblies
Conclusion

Brick and Mortar process offers ASIC-like chips without the masks and fabs

Architecture is crucial to meet the performance goals of the process

With low-cost assembly techniques, can meet the economic goal as well