
Expl. ILP & Dyn.Sched CSE 471 1

How to improve (decrease) CPI

• Recall: CPI = Ideal CPI + CPI contributed by stalls

• Ideal CPI =1 for single issue machine even with multiple
execution units

• Ideal CPI will be less than 1 if we have several execution
units and we can issue (and “commit”) multiple
instructions in the same cycle, i.e., we take advantage of
Instruction Level Parallelism (ILP)

Expl. ILP & Dyn.Sched CSE 471 2

Extending the simple pipeline

• Have multiple functional units for the EXE stage

• Increase the depth of the pipeline
– Required because of clock speed

• Increase the width of the pipeline
– Several instructions are fetched and decoded in the front-end of the

pipe

– Several instructions are issued to the functional units in the back-
end

– If m is the maximum number of instructions that can be issued in
one cycle, we say that the processor is m-wide.

Expl. ILP & Dyn.Sched CSE 471 3

Superscalar Terminology

• Multiple issue processors are called superscalars

• If instructions are issued to the back-end in program order,
we have in-order processors
– In-order processors are statically scheduled, i.e., the scheduling is

done at compile-time

• If instructions can be issued to the back-end in any order,
we have out-of-order (OOO) processors
– OOO processors are dynamically scheduled by the hardware

Expl. ILP & Dyn.Sched CSE 471 4

Extending simple pipeline to multiple pipes

• Single issue: in ID stage direct to one of several EX stages

• Common WB stage

• EX of various pipelines might take more than one cycle

• Latency of an EX unit = Number of cycles before its result
can be forwarded = Number of stages –1

• Not all EX need be pipelined

• IF EX is pipelined
– A new instruction can be assigned to it every cycle (if no data

dependency) or, maybe only after x cycles, with x depending on
the function to be performed

Expl. ILP & Dyn.Sched CSE 471 5

IF ID

EX (e.g., integer; latency 0)

M1 M7

A1 A4

Div (e.g., not pipelined,
Latency 25)

Me

Needed at beg of cycle
& ready at end of cycle

both

WB

F-p add (latency 3)

F-p mul (latency 6)

Expl. ILP & Dyn.Sched CSE 471 6

Hazards in example multiple cycle pipeline

• Structural: Yes
– Divide unit is not pipelined. In the example processor two Divides

separated by less than 25 cycles will stall the pipe
– Several writes might be “ready” at the same time and want to use

WB stage at the same time (not possible if single write port)

• RAW: Yes
– Essentially handled as in integer pipe (the dependent instruction is

stalled at the beginning of its EX stage) but with higher frequency
of stalls. Also more forwarding paths are needed.

• WAW : Yes (see later)
– WAR no since read is in the ID stage

• Out of order completion : Yes (see later)

Expl. ILP & Dyn.Sched CSE 471 7

RAW:Example from the book (pg A-51)

F4 <- M IF ID EX MeWB
F0 <- F4 * F6 IF ID st M1 M2 M3 M4 M5 M6 M7 Me WB
F2 <- F0 + F8 IF st ID st st st st st st A1 A2 A3 A4 Me WB
M <- F2 IF st st st st st st ID EX st st st Me WB

In blue data dependencies hazard

In red structural hazard

In green stall cycles

Note both the data dependency and structural
hazard for the 4th instruction

Expl. ILP & Dyn.Sched CSE 471 8

Conflict in using the WB stage

• Several instructions might want to use the WB stage at the
same time
– E.g.,A Multd issued at time t and an addd issued at time t + 3

• Solution 1: reserve the WB stage at ID stage (scheme
already used in CRAY-1 built in 1976)
– Keep track of WB stage usage in shift register
– Reserve the right slot. If busy, stall for a cycle and repeat
– Shift every clock cycle

• Solution 2: Stall before entering either Me or WB
– Pro: easier detection than solution 1
– Con: need to be able to trickle the stalls “backwards”.

Expl. ILP & Dyn.Sched CSE 471 9

Example on how to reserve the WB stage
(Solution 1 in previous slide)

Time in ID stage Operation Shift register

t multd 000 000 001

t +1 int 001 000 010

t + 2 int 011 000 100

t + 3 addd 110 00X 000

Note: multd and addd want WB at time t + 9. addd will be asked to stall one
cycle

Instructions complete out of order (e.g., the two int terminate before the multd)

Expl. ILP & Dyn.Sched CSE 471 10

WAW Hazards

• Instruction i writes f-p register Fx at time t

Instruction i + k writes f-p register Fx at time t - m

• But no instruction i + 1, i +2, i+k uses (reads) Fx (otherwise there
would be a stall in in-order issue processors)

• Only requirement is that i + k ´s result be stored
– Note: this situation should be rare (useless instruction i)

• Solutions:
– Squash i : difficult to know where it is in the pipe

– At ID stage check that result register is not a result register in all

subsequent stages of other units. If it is, stall appropriate number of cycles.

Expl. ILP & Dyn.Sched CSE 471 11

Out-of-order completion

• Instruction i finishes at time t

Instruction i + k finishes at time t - m
– No hazard etc. (see previous example on integer completing before

multd)

• What happens if instruction i causes an exception at a time

in [t-m,t] and instruction i + k writes in one of its own
source operands (i.e., is not restartable)?

• We’ll take care of that in OOO processors

Expl. ILP & Dyn.Sched CSE 471 12

Exception handling

• Solutions (cf. book pp A-54 – A-56 for more details)
– Do nothing (imprecise exceptions; bad with virtual memory)
– Have a precise (by use of testing instructions) and an imprecise

mode; effectively restricts concurrency of f-p operations
– Buffer results in a “history file” (or a “future file”) until previous

(in order) instructions have completed; can be costly when there
are large differences in latencies but a similar technique is used for
OOO execution .

– Restrict concurrency of f-p operations and on an exception
“simulate in software” the instructions in between the faulting and
the finished one.

– Flag early those operations that might result in an exception and
stall accordingly

Expl. ILP & Dyn.Sched CSE 471 13

Exploitation of Instruction Level Parallelism
(ILP)

• Will increase throughput and decrease CPU execution time
• Will increase structural hazards

– Cannot issue simultaneously 2 instructions to the same functional
unit

• Makes reduction in other stalls even more important
– A stall costs more than the loss of a single instruction issue

• Will make the design more complex mostly in OOO
processors where:
– WAW and WAR hazards can occur
– Out-of-order completion can occur
– Precise exception handling is more difficult

Expl. ILP & Dyn.Sched CSE 471 14

Where can we optimize exploitation of ILP?

• Speculative execution
– Branch prediction (we have seen that already)

– Bypassing Loads (memory reference speculation)

– Predication (we’ll see this technique with statically scheduled
VLIW machines)

• Hardware (run-time) techniques
– Forwarding (RAW; we have seen that)

– Register renaming (WAW, WAR)

Expl. ILP & Dyn.Sched CSE 471 15

Data dependencies (RAW)

• Instruction (statement) Sj dependent on Si if

– Transitivity: Instruction j dependent on k and k dependent on i

• Dependence is a program property

• Hazards (RAW in this case) and their (partial) removals
are a pipeline organization property

• Code scheduling goal
– Maintain dependence and avoid hazard (pipeline is exposed to the

compiler)

O Ii j

Expl. ILP & Dyn.Sched CSE 471 16

Name dependence

• Anti dependence
– Si: …<- R1+ R2; ….; Sj: R1 <- …
– At the instruction level, this is WAR hazard if instruction j finishes

first

• Output dependence
– Si: R1 <- …; ….; Sj: R1 <- …
– At the instruction level, this is a WAW hazard if instruction j

finishes first

• In both cases, not really a dependence but a “naming”
problem
– Register renaming (compiler by register allocation, in hardware see

later)

O Ij i

O Oi j

Expl. ILP & Dyn.Sched CSE 471 17

Static vs. dynamic scheduling

• Assumptions (for now):
– 1 instruction issue / cycle (Same techniques will be used when we look at

multiple issue)

– Several pipelines with a common IF and ID
• Ideal CPI still 1, but real CPI won’t be 1 but will be closer to 1 than before

• Static scheduling (optimized by compiler)
– When there is a stall (hazard) no further issue of instructions

– Of course, the stall has to be enforced by the hardware

• Dynamic scheduling (enforced by hardware)
– Instructions following the one that stalls can issue if they do not

produce structural hazards or dependencies

Expl. ILP & Dyn.Sched CSE 471 18

Dynamic scheduling

• Implies possibility of:
– Out of order issue (we say that an instruction is issued once it has

passed the ID stage) and hence out of order execution
– Out of order completion (also possible in static scheduling but less

frequent)
– Imprecise exceptions (will take care of it later)

• Example (different pipes for add/sub and divide)
R1 = R2/ R3 (long latency)
R2 = R1 + R5 (stall, no issue, because of RAW on R1)
R6 = R7 - R8 (can be issued, executed and completed before

the other 2)
How would static scheduling optimize for this example?

Expl. ILP & Dyn.Sched CSE 471 19

Issue and Dispatch

• Split the ID stage into:
– Issue : decode instructions; check for structural hazards and maybe

more hazards such as WAW depending on implementations. Stall
if there are any. Instructions pass in this stage in order

– Dispatch: wait until no data hazards then read operands. At the
next cycle a functional unit, i.e. EX of a pipe, can start executing

• Example revisited.
R1 = R2/ R3 (long latency; in execution)

R2 = R1 + R5 (issue but no dispatch because of RAW on R1)

R6 = R7 - R8 (can be issued, dispatched, executed and
completed before the other 2)

Expl. ILP & Dyn.Sched CSE 471 20

Implementations of dynamic scheduling

• In order to compute correct results, need to keep track of :
– execution unit (free or busy)

– register usage for read and write

– completion etc.

• Two major techniques
– Scoreboard (invented by Seymour Cray for the CDC 6600 in 1964)

– Tomasulo’s algorithm (used in the IBM 360/91 in 1967)

Expl. ILP & Dyn.Sched CSE 471 21

Scoreboarding -- The example machine
(cf. Figure A-50 (A-51 in 3rd)) in your book)Registers

Data buses

Functional units

(pipes)

scoreboard
Control lines
/status

Expl. ILP & Dyn.Sched CSE 471 22

Scoreboard basic idea

• The scoreboard keeps a record of all data dependencies
– Keeps track of which registers are used as sources and destinations

and which functional units use them

• The scoreboard keeps a record of all pipe occupancies
– The original CDC 6600 was not pipelined but conceptually the

scoreboard does not depend on pipelining

• The scoreboard decides if an instruction can be issued
– Either the first time it sees it (no hazard) or, if not, at every cycle

thereafter

• The scoreboard decides if an instruction can store its result
– This is to prevent WAR hazards

Expl. ILP & Dyn.Sched CSE 471 23

An instruction goes through 5 steps

• We assume that the instruction has been successfully
fetched and decoded (no I-cache miss)

• 1. Issue
– The execution unit for that instruction type must be free (no

structural hazard)

– There should be no WAW hazard

– If either of these conditions is false the instruction stalls. No
further issue is allowed

• There can be more fetches if there is an instruction fetch buffer (like
there was in the CDC 6660)

Expl. ILP & Dyn.Sched CSE 471 24

Execution steps under scoreboard control

• 2. Dispatch (Read operands)
– When the instruction is issued, the execution unit is reserved

(becomes busy)

– Operands are read in the execution unit when they are both ready
(i.e., are not results of still executing instructions). This prevents
RAW hazards (this conservative approach was taken because the
CDC 6600 was not pipelined)

• 3. Execution
– One or more cycles depending on functional unit latency

– When execution completes, the unit notifies the scoreboard it’s
ready to write the result

Expl. ILP & Dyn.Sched CSE 471 25

Execution steps under scoreboard control
(c’ed)

• 4. Write result
– Before writing, check for WAR hazards. If one exists, the unit is

stalled until all WAR hazards are cleared (note that an instruction
in progress, i.e., whose operands have been read, won’t cause a
WAR)

• 5. Delay (you can forget about this one)
– Because forwarding is not implemented, there should be one unit

of delay between writing and reading the same register (this
restriction seems artificial to me and is “historical”).

– Similarly, it takes one unit of time between the release of a unit
and its possible next occupancy

Expl. ILP & Dyn.Sched CSE 471 26

Optimizations and Simplifications

• There are opportunities for optimization such as:
– Forwarding

– Buffering for one copy of source operands in execution units (this
allows reading of operands one at a time and minimizing the WAR
hazards)

• We have assumed that there could be concurrent updates to
(different) registers.
– Can be solved (dynamically) by grouping execution units together

and preventing concurrent writes in the same group or by having
multiple write ports in the register file (expensive but common
nowadays)

Expl. ILP & Dyn.Sched CSE 471 27

What is needed in the scoreboard
(slightly redundant info)

• Status of each functional unit
– Free or busy
– Operation to be performed
– The names of the result Fi and source Fj, Fk registers
– Flags Rj, Rk indicating whether the source registers are ready
– Names Qj,Qk of the units (if any) producing values for Fj, Fk

• Status of result registers
– For each Fi the name of the unit (if any), say Pi that will produce

its contents (redundant but easy to check)

• The instruction status
– Been issued, dispatched, in execution, ready to write, finished?

Expl. ILP & Dyn.Sched CSE 471 28

Condition checking and scoreboard setting

• Issue step
– Unit free, say Ua and no

WAW

• Dispatch (Read operand)step
– Rj and Rk must be yes (results

ready)

• Execution step
– At end ask for writing

permission (no WAR)

• Write result
– Check if Pi is an Fj, Fk(Rj ,

Rk= no) in preceding instrs. If
yes stall.

• Issue step
– Ua busy and record Fi,Fj,Fk

– Record Qj, Qk and Rj,Rk

– Record Pi = Ua

• Dispatch (Read operand) step

• Execution step

• Write result
– For subsequent instrs, if

Qj(Qk) = Ua, set Rj(Rk) to yes

– Ua free and Pi = 0

Expl. ILP & Dyn.Sched CSE 471 29

Example

Load F6, 34(r2) Load f-p register F6

Load F2, 45(r3) Load latency 1 cycle

MulF F0,F2,F4 Mult latency 10 cycles

Sub F8, F6,F2 Add/sub latency 2 cycles

DivF F10,F0,F6 Divide latency 40 cycles

Add F6,F8,F2

Assume that the 2 Loads have been issued, the first one completed, the
second ready to write. The next 3 instructions have been issued (but
not dispatched).

RAW

WAR

Expl. ILP & Dyn.Sched CSE 471 30

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes

Sub F8, F6, F2 yes

Div F10, F0, F6 yes

Add F6,F8,F2
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int yes F2 r3

2 Mul yes F0 F2 F4 1 No Y

4 Add yes F8 F6 F2 1 Y No
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

F0 (2) F2 (1) F4 () F6() F8 (4) F10 (5) F12 ...

Expl. ILP & Dyn.Sched CSE 471 31

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes

Div F10, F0, F6 yes

Add F6,F8,F2
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul yes F0 F2 F4 Y Y

4 Add yes F8 F6 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

F0 (2) F2 () F4 () F6() F8 (4) F10 (5) F12 ...

1 cycle after 2nd load has
written its result

Expl. ILP & Dyn.Sched CSE 471 32

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes in progress

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul yes F0 F2 F4 Y Y

4 Add yes F6 F8 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

F0 (2) F2 () F4 () F6(4) F8 () F10 (5) F12 ...

6 cycles later; Mul in
execution; Sub has
completed;Div issues; Add
waits for writing

Expl. ILP & Dyn.Sched CSE 471 33

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes yes yes

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul no

4 Add yes F6 F8 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 Y Y

Register result status

F0 () F2 () F4 () F6(4) F8 () F10 (5) F12 ...

4 cycles later (I think!)
Mul is finished; Div can
dispatch; Add will write at
next cycle

Expl. ILP & Dyn.Sched CSE 471 34

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes yes yes

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul no

4 Add no
3 Mul no

5 Div yes F10 F0 F6 Y Y

Register result status

F0 () F2 () F4 () F6() F8 () F10 (5) F12 ...

1 cycle later. Only Div is
not finished

Expl. ILP & Dyn.Sched CSE 471 35

Tomasulo’s algorithm

• “Weaknesses” in scoreboard:
– Centralized control

– No forwarding (more RAW than needed)

– No buffering

• Tomasulo’s algorithm as implemented first in IBM 360/91
– Control decentralized at each functional unit

– Forwarding

– Concept and implementation of renaming registers that eliminates
WAR and WAW hazards

Expl. ILP & Dyn.Sched CSE 471 36

Improving on Dispatch with
Reservation Stations

• With each functional unit, have a set of buffers or
reservation stations
– Keep operands and function to perform

– Operands can be values or names of units that will produce the
value (register renaming) with appropriate flags

• Not both operands have to be “ready” at the same time

• When both operands have values, functional unit can
execute on that pair of operands

• When a functional unit computes a result, it broadcasts its
name and the value.

Expl. ILP & Dyn.Sched CSE 471 37

Tomasulo’s solution to resolve hazards

• Structural hazards
– No free reservation station (stall at issue time). No further issue

• RAW dependency (detected in each functional unit --
decentralized)
– The instruction with the dependency is issued (put in a reservation

station) but not dispatched (stalled). Subsequent instructions can be
issued, dispatched, executed and completed.

• No WAR and WAW hazards
– Because of register renaming through reservation stations

• Forwarding
– Done at end of execution by use of a common (broadcast) data bus

Expl. ILP & Dyn.Sched CSE 471 38

Example machine (cf. Figure 2.9 (3.2 3rd))
From memory From I-unit

Fp registersLoad
buffers

Store
buffers

To memory

Reservation
stations

F-p units

Common
data
bus

Expl. ILP & Dyn.Sched CSE 471 39

An instruction goes through 3 steps

• Assume the instruction has been fetched

• 1. Issue, dispatch, and read operands
– Check for structural hazard (no free reservation station or no free

load-store buffer for a memory operation). If there is structural
hazard, stall until it is not present any longer

– Reserve the next reservation station

– Read source operands

• If they have values, put the values in the reservation station

• If they have names, store their names in the reservation station

– Rename result register with the name of the reservation station in
the functional unit that will compute it

Expl. ILP & Dyn.Sched CSE 471 40

An instruction goes through 3 steps (c‘ed)

• 2. Execute
– If any of the source operands is not ready (i.e., the reservation station

holds at least one name), monitor the bus for broadcast

– When both operands have values, execute

• 3. Write result
– Broadcast name of the unit and value computed. Any reservation

station/result register with that name grabs the value

• Note two more sources of structural hazard due to contention:
– Two reservation stations in the same functional unit are ready to execute

in the same cycle: choose the “first” one

– Two functional units want to broadcast at the same time. Priority is
encoded in the hardware

Expl. ILP & Dyn.Sched CSE 471 41

Implementation

• All registers (except load buffers) contain a pair
{value,tag}

• The tag (or name) can be:
– Zero (or a special pattern) meaning that the value is indeed a value

– The name of a load buffer

– The name of a reservation station within a functional unit

• A reservation station consists of :
– The operation to be performed

– 2 pairs (value,tag) (Vj,Qj) (Vk,Qk)

– A flag indicating whether the accompanying f-u is busy or not

Expl. ILP & Dyn.Sched CSE 471 42

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes

Mul F0, F2, F4 yes

Sub F8, F6, F2 yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 yes Sub (Load1) 0 Load2

Add2 yes Add Add1 Load2

Mul1 yes Mul (F4) Load2 0
Add3 no

Mul2 yes Div (Load1) Mul1 0

Register status

F0 (Mul1) F2 (Load2) F4 () F6(Add2) F8 (Add1) F10 (Mul2) F12...

Initial: waiting for F2 to
be loaded from memory

(x) Means a value:
contents of x

Qj = 0 means Vj
has a value

Expl. ILP & Dyn.Sched CSE 471 43

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 yes Sub (Load1) (Load2) 0 0

Add2 yes Add (Load2) Add1 0

Mul1 yes Mul (Load2) (F4) 0 0
Add3 no

Mul2 yes Div (Load1) Mul1 0

Register status

F0 (Mul1) F2 () F4 () F6(Add2) F8 (Add1) F10 (Mul2) F12...

Cycle after 2nd
load has written
its result

Expl. ILP & Dyn.Sched CSE 471 44

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 no

Add2 yes Add (Add1) (Load2) 0 0

Mul1 yes Mul (Load2) (F4) 0 0

Add3 no

Mul2 yes Div (Load1) Mul1 0

Register status

F0 (Mul1) F2 () F4 () F6(Add2) F8 () F10 (Mul2) F12...

Cycle after sub
has written its
result

Expl. ILP & Dyn.Sched CSE 471 45

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes yes yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 no

Add2 no

Mul1 yes Mul (Load2) (F4) 0 0
Add3 no

Mul2 yes Div (Load1) Mul1 0

Register status

F0 (Mul1) F2 () F4 () F6() F8 () F10 (Mul2) F12...

Cycle after add
has written its
result

Expl. ILP & Dyn.Sched CSE 471 46

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes yes

Sub F8, F6, F2 yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 no

Add2 no

Mul1 no
Add3 no

Mul2 yes Div (Mul1) (Load1) 0 0

Register status

F0 () F2 () F4 () F6() F8 () F10 (Mul2) F12...

Cycle after mul
has written its
result

Expl. ILP & Dyn.Sched CSE 471 47

Other checks/possibilities

• In the example in the book there is no load/store
dependencies but since they can happen
– Load/store buffers must keep the addresses of the operands
– On load, check if there is a corresponding address in store buffers.

If so, get the value/tag from there (load/store buffers have tags)
– Better yet, have load/store functional units (still needs checking)

• The Tomasulo engine was intended only for f-p operations.
We need to generalize to include
– Handling branches, exceptions etc
– In-order completion
– More general register renaming mechanisms
– Multiple instruction issues

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

