Computer Design and Organization

« Architecture = Design + Organization + Performance
e Topicsin thisclass:

— Central processing unit: deeply pipelined, multiple instr. per cycle,
exploitation of instruction level parallelism (in-order and out-of -
order), support for speculation (branch prediction, spec. |oads).

— Memory hierarchy: multi-level cache hierarchy, includes hardware
and software assists for enhanced performance

— Multiprocessors. SMP s and CMP s —cache coherence and
synchronization

— Multithreading: Fine, coarse and SMT
— Some “advanced” topic: current research in dept.

Review CSE 471 1

Technological improvements

e CPU:

— Annual rate of speed improvement is 35% before 1985 and 60%
from 1985 until 2003

— Slightly faster than increase in number of transistors on-chip
(Moore' slaw)

e Memory:
— Annual rate of speed improvement (decrease in latency) is < 10%
— Density quadruplesin 3 years.

e /O :

— Access time hasimproved by 30% in 10 years
— Density improves by 50% every year

Review CSE 471

Moore' s Law

transistors
10,000,000,000
Dual-Core Intel” Itanium® 2 Processor
MOORE'S LAW T A, 1.000,000,000
anium® 2 Processor
Intel tandum® Processor
Intel® Pentium® 4 Processor 100,000,000
Intel Pentium® Bl Processor
Intel* Pentium® Il Processor 10,000,000

Intel* Pentium® Processor ,_-""
= |
Intal486™ Processor r,.f”"

1,000,000
Intel386™ Processor /

286
100,000
g086

~ 8080 / 10,000
8008

4008 g

1,000
1970 1975 1980 1985 1950 1995 2000 2005 2010

Review CSE 471

Evolution of Intel Microprocessor
Speeds

4000

3500

3000

2500 —+

2000

Speed M)

1500
1000
500
0 : | | e
1971 1974 1979 1982 1985 1989 1993 1997 1998 1999 2000 2001 2002 2003

Year

Review CSE 471

Power Dissipation

Watts/cm?
1000 g 'O‘,-
E >
= L+~ Rocket
= #
Nuclear o Nozzle
| Reactor -~
100 E
i <> Pentium IV Processor
B Hot _ Pennlt_irqn Jf#ﬁPr:o::esmr
10 | Plate Pentium Il Processor
g Pentium Pro Processor
- Pentium Processor -
- E
B $id86
‘I [l [l [] [] [] [1 1 [l [l =

1.50 1.0n 0.7p 0.5p 0.35u1 0.2510.18u 0.73u 0.70pn 0.07u
1986 1991 1993 1995 1998 1999 2000 2002 2004 2005

Review CSE 471

Processor-Memory Performance Gap

(thereis amuch nicer graph in H& P 4! Ed Figure 5.2 page 289 although it assumes that the
processor speed is still improving)

X Memory latency decrease (10x over 8 years but densities have increased
100x over the same period)

0 XEJG CPU speed (100x over 10 years)

1000 Pentium IV
 PentiumllLe— 4
Pentium Pro ‘M 41"
Pentium T emory w
100
386 “Memory gap”i v
Y X ~
10 X

\4

89 91 93 95 97 99 01

Review CSE 471 6

Performance eva uation basics

» Performance inversely proportional to execution time
« Elapsed time includes:
user + system; 1/0O; memory accesses, CPU per se
e CPU execution time (for agiven program): 3 factors
— Number of instructions executed
— Clock cycle time (or rate)

— CPI: number of cycles per instruction (or itsinverse | PC)
CPU execution time = Instruction count * CPI * clock cycletime

Review CSE 471

Components of the CPI

CPI for single instruction issue with ideal pipeline=1

Previous formula can be expanded to take into account
classes of instructions

— For example in RISC machines: branches, f.p., |oad-store.

— For example in CISC machines: string instructions

CPl =X CPI, * f, where f; isthe frequency of instructionsin classi

We'll talk about “ contributions to the CPI” from, e.qg,:

— memory hierarchy
— branch (misprediction)
— hazards etc.

Review CSE 471

Comparing and summarizing benchmark
performance

For execution times, use (weighted) arithmetic mean:
Weighted Ex. Time = X Weight, * Time,

For rates, use (weighted) harmonic mean:
Weighted Rate= 1/ 2 (Weight, / Rate;)

As per Jim Smith (1988 — CACM)

“Simply put, we consider one computer to be faster than another if it
executes the same set of programsin lesstime”

Common benchmark suites: SPEC for int and fp (SPEC92,
SPEC95, SPEC2000, SPEC2006), SPECweb, SPECjava
etc., Ogden benchmark (linked lists), multimedia etc.

Review CSE 471

Computer design: Make the common case fast

 Amdahl’slaw (speedup)

Speedup = (performance with enhancement)/(performance base case)
Or equivaently

Speedup = (exec.time base case)/(exec.time with enhancement)
o Application to parallel processing

— s fraction of program that is sequential

— Speedup Sisat most 1/s

— That isif 20% of your program is sequential the maximum
speedup with an infinite number of processorsisat most 5

Review CSE 471 10

Pipelining

One instruction/result every cycle (ideal)
— Not in practice because of hazards
|ncrease throughput (wrt non-pipelined implementation)
— Throughput = number of results/second
Speed-up (over non-pipelined implementation)
— Intheideal casg, if n stages, the speed-up will be closeto n. Can’t make n

too large: physical limitations and load balancing between stages &
hazards

Might slightly increase the latency of individual instructions (pipeline
overhead)

Review CSE 471 11

Basic pipeline implementation

Five stages: |IF, ID, EXE, MEM, WB

What are the resources needed and where
— ALU’s, Registers, Multiplexers etc.

What info. isto be passed between stages

— Requires pipeline registers between stages. |F/ID, ID/EXE,

EXE/MEM and MEM/WB
— What is stored in these pipeline registers?
Design of the control unit.

Review CSE 471

12

Mem WB

EX/MEM MEM/WB

data—

\4

7
control

Review CSE 471 13

Hazards

Structural hazards

— Resource conflict (mostly in multiple instruction issue machines,
also for resources which are used for more than one cycle)

Data dependencies
— Most common RAW but also WAR and WAW in OO0 execution

Control hazards
— Branches and other flow of control disruptions

Conseguence: stallsin the pipeline
— Equivalently: insertion of bubbles or of no-ops

Review CSE 471 14

Pipeline speed-up

. _ pipeline depth
eedup_idea =
Speedup_ 1

pipelinedepth

Speedup hazards= _
1+ CPI contributed by hazards

Review CSE 471 15

Example of structural hazard

For single issue machine: common data and instruction
memory (unified cache)

— Pipeline stall every load-store instruction (control easy to

Implement)

Better solutions

— Separate |-cache and D-cache

— Instruction buffers

— Both + sophisticated instruction fetch unit!

Will see more cases in multiple issue machines

Review CSE 471 16

Data hazards

« Data dependencies between instructions that are in the pipe
at the same time.

e For single pipelinein order issue: Read After Write hazard

(RAW)
Add
Sub
Add
Or
Add

R1, R2, R3
R4, R1,R2
R3, R5, R1
R6,R1,R2

R5, R2, R1

Review CSE 471

#R1 isresult register
#eonflict with R1

#eonflict with R1

#eonflict with R1

#R1 OK now (5 stage pipe)

17

|F ID EXE MEM WB
R1 available here

Add R1, R2, R3 A/‘/
| | | | | | R 1 needed here
Sub R4,R1,R2 | | — .
| | |
ADD R3,R5,R1 1 i i i
OK if in D stage one can write
in 1St pay of cycle and read in 2" part
OR R6,R1,R2 i i |
OK
Add R5,R1,R2 i i i i i

Review CSE 471 18

Forwarding

Result of ALU operation is known at end of EXE stage

Forwarding between:
— EXE/MEM pipeline register to ALUinput for instructionsi and i+ 1

— MEM/WB pipeline register to ALUinput for instructionsi and i+2
* Notethat if the same register has to be forwarded, forward the last
one to be written

— Forwarding through register file (write 1st half of cycle, read 2nd
half of cycle)

Need of a“forwarding box” in the Control Unit to check
on conditions for forwarding

Forwarding between load and store (memory copy)

Review CSE 471 19

|F ID EXE MEM WB
R1 available here

Add R1, R2, R3

i i i R 1 needed here
Sub R4,RLR2 ,
| |
ADD R3,R5,R1 1

OR R6,R1,R2 i
OK w/o forwarding
Add R5,R1,R2 i i i i i

Review CSE 471 20

Other data hazards

o Write After Write (WAW). Can happen in

— Pipelines with more than one write stage
— Morethan one functional unit with different latencies (see later)

* Write After Read (WAR). Very rare
— With VAX-like autoincrement addressing modes

Review CSE 471

21

Forwarding cannot solve all conflicts

e For example, in asimple MIPS-like pipeline

Lw
Sub
Add
Or

R1, O(R2)
R4, R1,R2
R3, R5, R1
R6,R1,R2

Review CSE 471

#Result at end of MEM stage
#conflict with R1

#OK with forwarding

OK with forwarding

22

|F ID EXE MEM WB
R1 available here

LW R1, O(R2)

| | | | I/

i i i i i | R 1 needed here

|
Sub R4,R1,R2 | | Nowa I .
| | | | | |
ADD R3,R5,R1 | | | |
o/
OR R6,RL,R2 | | | | |

Review CSE 471 23

IF ID
LW R1, O(R2)

EXE MEM WB
R1 available here

| R 1 needed here

Sub R4,R1,R2 |

ADD R3,R5,R1

OR R6,R1,R2

Review CSE 471 24

Hazard detection unit

o If aLoad (instructioni-1) isfollowed by instruction i that
needs the result of the load, we need to stall the pipeline
for onecycle, that is

— Instruction i-1 should progress normally
— instruction i should not progress
— no new instruction should be fetched

o Controlled by a*“hazard detection box” within the Control
unit; it should operate during the ID stage

Review CSE 471

25

WB

Mem
EX/MEM MEM/WE

EXE

ID/RR

|-

I

26

(2772720777777 7777777777772

P

Zero

Forwarding

unit

:
(SN

ID/EX

/1D

r%

Stall unit

(/2222722277

\\\&\\

M

27

data—

e
control % N
Control unit
Review CSE 471

Control Hazards

Branches (conditional, unconditional, call-return)

Interrupts. asynchronous event (e.g., |/O)
— Occurrence of an interrupt checked at every cycle

— If aninterrupt has been raised, don’t fetch next instruction, flush
the pipe, handle the interrupt

Exceptions (e.g., arithmetic overflow, page fault etc.)
— Program and data dependent (repeatable), hence “ synchronous’

Review CSE 471

27

Exceptions

e Occur “within” an instruction, for example:
— During IF: page fault
— During ID: illegal opcode
— During EX: division by O
— During MEM: page fault; protection violation

« Handling exceptions

— A pipelineisrestartable if the exception can be handled and the
program restarted w/o affecting execution

Review CSE 471

Precise exceptions

» |If exception at instruction i then
— Instructionsi-1, i-2 etc complete normally (flush the pipe)

— Instructionsi+1, i+2 etc. aready in the pipeline will be “no-oped”
and will be restarted from scratch after the exception has been
handled

« Handling precise exceptions: Basic idea
— Force atrap instruction on the next IF

— Turn off writesfor all instructions i and following

— When the target of the trap instruction receives control, it saves the
PC of the instruction having the exception

— After the exception has been handled, an instruction “return from
trap” will restore the PC.

Review CSE 471 29

Precise exceptions (cont’ d)

* Relatively smple for integer pipeline
— All current machines have precise exceptions for integer and |oad-
store operations (page fault)

e More complex for f-p
— Might be more lenient in treating exceptions
— Special f-p formats for overflow and underflow etc.

Review CSE 471 30

Integer pipeline (RISC) precise exceptions

* Recall that exceptions can occur in all stages but WB
o EXxceptions must be treated in instruction order

Instruction | starts at time't

Exceptionin MEM stage at timet + 3 (treat it first)

Instruction i + 1 startsat timet +1

Exception in |F stage at timet + 1 (occurs earlier but treat in 2nd)

Review CSE 471

31

Treating exceptions in order

o Usepipeineregisters
— Status vector of possible exceptions carried on with the instruction.

— Once an exception is posted, no writing (no change of state; easy
In integer pipeline -- just prevent store in memory)
— When an instruction leaves MEM stage, check for exception.

Review CSE 471 32

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

