
Fall 2004 CSE 471 1

Multiple Instruction Issue

Multiple instructions issued each cycle

� better performance

• increase instruction throughput

• decrease in CPI (below 1)

� greater hardware complexity, potentially longer wire lengths

� harder code scheduling job for the compiler

Superscalar processors
• instructions are scheduled for execution by the hardware
• different numbers of instructions may be issued simultaneously

VLIW (“very long instruction word”) processors
• instructions are scheduled for execution by the compiler
• a fixed number of operations are formatted as one big instruction
• usually LIW (3 operations) today

Fall 2004 CSE 471 2

Superscalars

Definition:

• a processor that can execute more than one instruction per cycle

• for example,
integer computation, floating point computation, data transfer,
transfer of control

• issue width = the number of issue slots, 1 slot/instruction

• not all types of instructions can be issued together

• hardware decides which instructions to issue

Fall 2004 CSE 471 3

2-way Superscalar

Fall 2004 CSE 471 4

Superscalars

Require:

• instruction fetch

• fetching of multiple instructions at once

• dynamic branch prediction & fetching speculatively beyond
conditional branches

• instruction issue

• methods for determining which instructions can be issued next

• the ability to issue multiple instructions in parallel

• instruction commit

• methods for committing several instructions in fetch order

• duplicate & more complex hardware

Fall 2004 CSE 471 5

In-order vs. Out-of-order Execution

In-order instruction execution
• instructions are fetched, executed & committed in compiler-

generated order
• if one instruction stalls, all instructions behind it stall

• instructions are statically scheduled by the hardware
• scheduled in compiler-generated order
• how many of the next n instructions can be issued, where n is

the superscalar issue width
• superscalars can have structural & data hazards within

the n instructions
• 2 styles of static instruction scheduling

• dispatch buffer & instruction slotting (Alpha 21164)
• shift register model (UltraSPARC-1)

• advantage of in-order instruction scheduling: simpler
implementation

faster clock cycle
fewer transistors

Fall 2004 CSE 471 6

In-order vs. Out-of-order Execution

Out-of-order instruction execution

• instructions are fetched in compiler-generated order

• instruction completion may be in-order (today) or out-of-order (older
computers)

• in between they may be executed in some other order

• instructions are dynamically scheduled by the hardware

• hardware decides in what order instructions can be executed

• instructions behind a stalled instruction can pass it

• advantages: higher performance

• better at hiding latencies, less processor stalling

• higher utilization of functional units

Fall 2004 CSE 471 7

In-order instruction issue: Alpha 21164

Instruction slotting
• after decode, instructions are issued to functional units
• constraints on functional unit capabilities & therefore types of

instructions that can issue together
• an example: 2 ALUs, 1 load/store unit, 1 FPU

1 ALU does shifts & integer multiplies; the other
executes branches

• can issue up to 4 instructions
• completely empty the instruction buffer before fill it again
• compiler can pad with nops so the second (conflicting)

instruction is issued with the following instructions, not alone
• no data dependences in same issue cycle (some exceptions)

• hardware to:
• detect data hazards
• control bypass logic

Fall 2004 CSE 471 8

21164 Instruction Unit Pipeline

Fetch & issue
S0: instruction fetch

branch prediction bits read

S1: opcode decode

target address calculation

if predict taken, redirect the fetch

instruction TLB check

S2: instruction slotting: decide which of the next 4 instructions can be
issued
• intra-cycle structural hazard check
• intra-cycle data hazard check

S3: instruction dispatch
• inter-cycle load-use & WAW data hazard checks
• inter-cycle structural hazard check
• register read

Fall 2004 CSE 471 9

21164 Integer Pipeline

Execute (2 pipelines)

S4: integer execution

effective address calculation

S5: conditional move & branch execution

data cache access

S6: register write

also a 9-stage FP pipeline

Fall 2004 CSE 471 10

Fall 2004 CSE 471 11

In-order instruction issue: UltraSparc 1

Shift register model

• can issue up to 4 instructions per cycle

• any instruction in any slot (almost)

• choose from 2 integer, 2 FP/graphics, 1 load/store, 1 branch

• shift in new instructions after every group of instructions is issued

• some data dependent instructions can issue in same cycle

Fall 2004 CSE 471 12

UltraSPARC 1

Fall 2004 CSE 471 13

Fall 2004 CSE 471 14

Superscalars

Performance impact:

• increase performance because execute multiple instructions in
parallel, not just overlapped

• CPI potentially < 1 (.5 on our R3000 example)

• IPC (instructions/cycle) potentially > 1 (2 on our R3000 example)

• better functional unit utilization

but

• need to fetch more instructions − how many?

• need independent instructions (i.e., good ILP) − why?

• need a good local mix of instructions − why?

• need more instructions to hide load delays − why?

• need to make better branch predictions − why?

Fall 2004 CSE 471 15

Code Scheduling on Superscalars

Original code
Loop: lw R1, 0(R5)

addu R1, R1, R6

sw R1, 0(R5)

addi R5, R5, -4

bne R5, R0, Loop

Fall 2004 CSE 471 16

Code Scheduling on Superscalars

ALU/branch instruction Data transfer instruction clock cycle

Loop: 1

2

3

4

With latency-hiding code scheduling
Loop: lw R1, 0(s1)

addi R5, R5, -4

addu R1, R1, R6

sw R1, 4(R5)

bne R5, $0, Loop

Original code
Loop: lw R1, 0(R5)

addu R1, R1, R6

sw R1, 0(R5)

addi R5, R5, -4

bne R5, R0, Loop

Fall 2004 CSE 471 17

Code Scheduling on Superscalars: Loop Unrolling

What is the cycles per iteration?

What is the IPC?

Loop unrolling provides:
+ fewer instructions that cause hazards (I.e., branches)
+ more independent instructions (from different iterations)
+ increase in throughput
- increases register pressure
- must change offsets

ALU/branch instruction Data transfer instruction clock cycle
Loop: addi R5, R5, -16 lw R1, 0(R5) 1

lw R2, 12(R5) 2
addu R1, R1, R6 lw R3, 8(R5) 3
addu R2, R2, R6 lw R4, 4(R5) 4
addu R3, R3, R6 sw R1, 16(R5) 5
addu R4, R4, R6 sw R2, 12(R5) 6

sw R3, 8(R5) 7
bne R5, R0, Loop sw R4, 4(R5) 8

Fall 2004 CSE 471 18

Superscalars

Hardware impact:
• more & pipelined functional units
• multi-ported registers for multiple register access
• more buses from the register file to the additional functional units
• multiple decoders
• more hazard detection logic
• more bypass logic
• wider instruction fetch
• multi-banked L1 data cache

or else the processor has structural hazards (due to an unbalanced
design) and stalling

There are restrictions on instruction types that can be issued together to
reduce the amount of hardware.

Static (compiler) scheduling helps.

Fall 2004 CSE 471 19

Modern Superscalars

Alpha 21364: 4 instructions

Pentium IV: 5 RISClike operations dispatched to functional units

R12000: 4 instructions

UltraSPARC-3: 6 instructions dispatched

