
Fall 2004 CSE 471 1

Motivation for Multithreaded Architectures

Processors not executing code at their hardware potential

• late 70’s: performance lost to memory latency

• 90’s: performance not in line with the increasingly complex parallel 
hardware

• Increase in instruction issue bandwidth

• Increase in number of functional units

• execute out-of-order execution

• techniques for decreasing/hiding branch & memory latencies

• Still, processor utilization was decreasing & instruction 
throughput not increasing in proportion to the issue width

Fall 2004 CSE 471 2

Motivation for Multithreaded Architectures



Fall 2004 CSE 471 3

Motivation for Multithreaded Architectures

Major cause is the lack of instruction-level parallelism in a single executing 
thread

Therefore the solution has to be more general than building a smarter 
cache or a more accurate branch predictor

Fall 2004 CSE 471 4

Multithreaded Processors

Multithreaded processors can increase the pool of independent 
instructions & consequently address multiple causes of processor
stalling

• holds processor state for more than one thread of execution

• registers

• PC

• each thread’s state is a hardware context

• execute the instruction stream from multiple threads without 
software context switching

• utilize thread-level parallelism (TLP) to compensate for a lack in ILP



Fall 2004 CSE 471 5

Multithreading

Traditional multithreaded processors hardware switch to a different context 
to avoid processor stalls

2 styles of traditional multithreading
1. coarse-grain multithreading

• switch on a long-latency operation (e.g., L2 cache miss)
• another thread executes while the miss is handled
• modest increase in instruction throughput

• doesn’t hide latency of short-latency operations
• no switch if no long-latency operations
• need to fill the pipeline on a switch

• potentially no slowdown to the thread with the miss
• doesn’t add much to an already long stall

• HEP, IBM RS64 III

Fall 2004 CSE 471 6

Traditional Multithreading

2 styles of traditional multithreading

2. fine-grain multithreading

• can switch to a different thread each cycle (usually round robin)

• hides latencies of all kinds

• larger increase in instruction throughput but slows down the 
execution of each thread

• Cray (Tera) MTA



Fall 2004 CSE 471 7

Comparison of Issue Capabilities

Fall 2004 CSE 471 8

Simultaneous Multithreading (SMT)

3rd style of multithreading, different concept

3. simultaneous multithreading (SMT)

• issues multiple instructions from multiple threads each cycle

• no hardware context switching

• huge boost in instruction throughput with less degradation to 
individual threads



Fall 2004 CSE 471 9

Comparison of Issue Capabilities

Fall 2004 CSE 471 10

Cray (Tera) MTA 

Fine-grain multithreaded processor
• can switch to a different thread each cycle

• switches to ready threads only
• allows execution to remain with the current thread for a specific 

number of cycles (discussed under compiler support)
• up to 128 hardware contexts

• lots of latency to hide, mostly from the multi-hop interconnection 
network

• average instruction latency is 70-cycles (at one point)
(i.e., 70 instruction streams needed to hide all latency, on 
average)

• processor state for all 128 contexts
• GPRs (total of 4K registers!)
• status registers (includes the PC)
• branch target registers



Fall 2004 CSE 471 11

Cray (Tera) MTA

Interesting features

• Originally no data caches

• to avoid having to keep caches coherent (topic of the next 
lecture section)

• increases the latency for data accesses but reduces the 
variation

• L1 & L2 instruction caches

• instruction accesses are more predictable & have no coherency 
problem

• prefetch straight-line & target code

Fall 2004 CSE 471 12

Cray (Tera) MTA

Interesting features

• Trade-off between avoiding memory bank conflicts & exploiting 
spatial locality

• memory distributed among hardware contexts (processors)

• memory addresses are randomized to avoid conflicts

• want to fully utilize all memory bandwidth

• run-time system can confine consecutive virtual addresses to a 
single (close-by) memory unit 

• reduces latency

• used mainly for instructions



Fall 2004 CSE 471 13

Cray (Tera) MTA

Interesting features
• tagged memory for synchronization

• indirectly set full/empty bits to prevent data races
• prevents a consumer/producer from loading/overwriting a 

value before a producer/consumer has written/read it
• set to empty when producer instruction starts
• consumer instructions block if try to read the producer 

value
• set to full when producer value is written
• consumers can now read a valid value

• explicitly set full/empty bits for synchronization
• primarily used to synchronize threads that are accessing 

shared data (topic of the next lecture)
• lock: read memory location & set to empty
• other readers are blocked
• unlock: write & set to full

Fall 2004 CSE 471 14

Cray (Tera) MTA

Interesting features

• virtual memory system

• no paging: want pages pinned down in memory

• page size is 256MB

• user-mode trap handlers

• fatal exceptions, normalizing floating point numbers



Fall 2004 CSE 471 15

Cray (Tera) MTA

Compiler support
• each instruction is a VLIW instruction

• memory/arithmetic/branch
• load/store architecture
• need a good code scheduler

• explicit dependence look-ahead
• field in a memory instruction that specifies the number of 

independent (of the memory op) LIW instructions that follow
• deviation from fine-grain multithreading

• handling branches
• instruction to store a branch target in a register before the 

branch is executed
• can start prefetching the target code

Fall 2004 CSE 471 16

Cray (Tera) MTA

Run-time support

• thread manipulation

• protection domains: group of threads executing in the same 
virtual address space

• OS sets the maximum number of thread contexts (instruction 
streams) a domain is allowed

• domain can create & kill threads within that limit, depending on
its need for them

• OS bases resource allocations on resource usage



Fall 2004 CSE 471 17

SMT: The Executive Summary

Simultaneous multithreaded (SMT) processors combine designs from:
• superscalar processors
• traditional multithreaded processors

The combination:
• SMT issues & executes instructions from multiple threads 

simultaneously
=> converting TLP to ILP

• threads share almost all hardware resources

Fall 2004 CSE 471 18

Performance Implications

Multiprogramming workload

• 2.5X on SPEC95, 4X on SPEC2000
Parallel programs

• ~.7 on SPLASH2

Commercial databases
• 2-3X on TPC B; 1.5 on TPC D

Web servers & OS

• 4X on Apache and Digital Unix



Fall 2004 CSE 471 19

Does this Processor Sound Familiar?

Huge performance boost + straightforward implementation =>
• 2-context Intel Hyperthreading
• 4-context IBM Power5 

• 2-context Sun UltraSPARC on 4-processor CMP
• 4-context Compaq 21464
• network processor & mobile device start-ups

• others in the wings

Fall 2004 CSE 471 20

An SMT Architecture

Three primary goals for this architecture:

1. Achieve significant throughput gains with multiple threads

2. Minimize the performance impact on a single thread executing 
alone

3. Minimize the microarchitectural impact on a conventional out-of-
order superscalar design



Fall 2004 CSE 471 21

Implementing SMT 

Fall 2004 CSE 471 22

Implementing SMT

Can use as is most hardware on current out-or-order processors
Out-of-order renaming & instruction scheduling mechanisms

• physical register pool model
• renaming hardware eliminates false dependences both within a 

thread (just like a superscalar) & between threads
• map thread-specific architectural registers onto a pool of thread-

independent physical registers
• operands are thereafter called by their physical names
• an instruction is issued when its operands become available & a 

functional unit is free
• instruction scheduler not consider thread IDs when dispatching 

instructions to functional units
(unless threads have different priorities)



Fall 2004 CSE 471 23

From Superscalar to SMT

Extra pipeline stages for accessing thread-shared register files

• 8 threads * 32 registers + renaming registers

SMT instruction fetcher (ICOUNT)

• fetch from 2 threads each cycle

• count the number of instructions for each thread in the pre-
execution stages

• pick the 2 threads with the lowest number

• in essence fetching from the two highest throughput threads

Fall 2004 CSE 471 24

From Superscalar to SMT

Per-thread hardware
• small stuff
• all part of current out-of-order processors
• none endangers the cycle time

• other per-thread processor state, e.g.,
• program counters
• return stacks
• thread identifiers, e.g., with BTB entries, TLB entries

• per-thread bookkeeping for
• instruction queue flush 
• instruction retirement
• trapping

This is why there is only a 10% increase to Alpha 21464 chip area.



Fall 2004 CSE 471 25

Implementing SMT

Thread-shared hardware:

• fetch buffers

• branch prediction structures

• instruction queues

• functional units

• active list

• all caches & TLBs

• MSHRs

• store buffers

This is why there is little single-thread performance degradation (~1.5%).

Fall 2004 CSE 471 26

Architecture Research

Concept & potential of Simultaneous Multithreading: ISCA ’95 & ISCA 25th 
Anniversary Anthology

Designing the microarchitecture: ISCA ’96

• straightforward extension of out-of-order superscalars

I-fetch thread chooser: ISCA ’96

• 40% faster than round-robin

The lockbox for cheap synchronization: HPCA ’98

• orders of magnitude faster

• can parallelize previously unparallelizable codes



Fall 2004 CSE 471 27

Architecture Research

Software-directed register deallocation: TPDS ’99

• large register-file performance w. small register file

Mini-threads: HPCA ’03

• large SMT performance w. small SMTs

SMT instruction speculation: TOCS ‘03

• speculation keeps a good thread mix in the IQ

• most important performance factor

Fall 2004 CSE 471 28

Compiler Research

Tuning compiler optimizations for SMT: Micro ‘97 & IJPP ’99

• data decomposition: use cyclic iteration scheduling

• tiling: use cyclic tiling; no tile size sweet spot

• software speculation: generates too much overhead code on integer 
programs

Communicate last-use info to HW for early register deallocation: TPDS ’99

• now need ¼ the renaming registers

Compiling for fewer registers/thread: HPCA ’03

• surprisingly little additional spill code (avg. 3%)



Fall 2004 CSE 471 29

OS Research

Analysis of OS behavior on SMT: ASPLOS ‘00
• Kernel-kernel conflicts in I$ & D$ & branch mispredictions 

ameliorated by SMT instruction issue + thread-sharing in HW

OS/runtime support for mini-threads: HPCA ’03
• dedicated server: recompile for fewer registers
• multiprogrammed environment: multiple versions

OS/runtime support for executing threaded programs: ISCA ’98 & PPoPP 
’03

• dynamic memory allocation, synchronization, stack offsetting, page 
mapping

Fall 2004 CSE 471 30

Others are Now Carrying the Ball

Fault detection & recovery

Thread-level speculation
Instruction & data prefetching
Instruction issue hardware design

Thread scheduling
Single-thread execution
Profiling executing threads

SMT-CMP hybrids
Power considerations



Fall 2004 CSE 471 31

SMT Collaborators

UW
Hank Levy
Steve Gribble

Dean Tullsen (UCSD)
Jack Lo (VMWare)
Sujay Parekh (IBM Yorktown)
Brian Dewey (Microsoft)
Manu Thambi (Microsoft)
Josh Redstone (Google)
Mike Swift
Luke McDowell (Naval 

Academy)
Steve Swanson
Aaron Eakin (HP)
Dimitriy Portnov (Google)

DEC/Compaq

Joel Emer (now Intel)
Rebecca Stamm

Luiz Barroso (now Google)
Kourosh Gharachorloo (now Google)

For more info on SMT:
http://www.cs.washington.edu/research/smt


