Issues in Multiprocessors

Which programming model for interprocessor communication
e shared memory
* regular loads & stores
« message passing
 explicit sends & receives

Which execution model
» control parallel
« identify & synchronize different asynchronous threads
» data parallel
» same operation on different parts of the shared data space

Fall 2004 CSE 471

Issues in Multiprocessors

How to express parallelism
» automatic (compiler) detection
« implicitly parallel C & Fortran programs, e.g., SUIF compiler
» language support
* HPF, ZPL
 runtime library constructs
» coarse-grain, explicitly parallel C programs

Algorithm development

« embarrassingly parallel programs could be easily parallelized
» development of different algorithms for same problem

Fall 2004 CSE 471

Issues in Multiprocessors

How to get good parallel performance

recognize parallelism

transform programs to increase parallelism without decreasing
processor locality

decrease sharing costs

Fall 2004 CSE 471

Flynn Classification

SISD: single instruction stream, single data stream

SIMD:

Fall 2004

single-context uniprocessors

single instruction stream, multiple data streams
exploits data parallelism

example: Thinking Machines CM-1...

multiple instruction streams, single data stream
systolic arrays

example: Intel iWarp

multiple instruction streams, multiple data streams
multiprocessors

multithreaded processors

relies on control parallelism: execute & synchronize different
asynchronous threads of control

parallel programming & multiprogramming
example: most processor companies have MP configurations

CSE 471

Nexus
Front end 0
(DEC VAX or
Symbolics)
Bus interface
Connection Machine
Parallel Processor Unit
Connection Machine Connection Machine Front end 1
186,384 processors 16,384 processors (DEC vAX OF
Symbolics)
Bus interface
W i sequancer] |[ll [sequencer ==
] 3
- Y
Front end 2
ISequencer] Sequencer (oec v.u»or —_—
1 1 2 s Symbolics)
\— Bus intertace
Connection Machine Connection Machine
16,384 procassors 16.384 processors
Front end 3
T 1 I i (DEC vAX OF
Symbolics)
Connection Machine YO System Bus Interface
I [| I
Data Data Data Graphic :
Vault Vault Vault Display Network |

Figure 1. Connection Machine system organization.

Fall 2004 CSE 471

Systolic Array

WO X 0\
ab L l;()i _ . Tty oy tlox BUSTS U g

cd - curt di oy +A2
% wl Z
w + 4
Sy s BN

Fall 2004 CSE 471

Low-end
* bus-based
» simple, but a bottleneck
» simple cache coherency protocol
» physically centralized memory
 uniform memory access (UMA machine)

» Sequent Symmetry, SPARCCenter, Alpha-, PowerPC- or SPARC-
based servers

Fall 2004 CSE 471
Low-end MP
One or One or One or One or
more levels more levels more levels more levels
of cache of cache of cache of cache

I/0O System

Main memory

Fall 2004 CSE 471

MIMD

High-end

 higher bandwidth, multiple-path interconnect
* more scalable
» more complex cache coherency protocol (if shared memory)
* longer latencies

 physically distributed memory

* non-uniform memory access (NUMA machine)

» could have processor clusters

» SGI Challenge, Convex Examplar, Cray T3D, IBM SP-2, Intel
Paragon

Fall 2004 CSE 471 9

High-end MP

.

\
I'rocessor
+ cache

) [HHT) [eoHH)

Processon Processor!

+ cache + cache

/ N
['rocessor
|

\+ cache

a Mn'umli}—‘w—{f/]r;‘] lj\’ltflllll]")'}—

(e 70) [emord—{(70) [Femonjd—{170) [emonj4=(170)

Proe 1";“()\1
Cae 'Il‘ /
\ p

Fall 2004 CSE 471 10

\

, Procossor Processon Processor

\} cache / + cache t cache

N N

MIMD Programming Models

Address space organization for physically distributed memory

* 1 (logical) global address space
 private address space/processor

Inter-processor communication
L]
 accessed via load/store instructions

* SPARCCenter, SGI Challenge, Cray T3D, Convex Exemplar,
KSR-1&2

« explicit communication by sending/receiving messages
e TMC CM-5, Intel Paragon, IBM SP-2

Fall 2004 CSE 471

11

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model
 global shared address space
* not worry about data locality
get better performance when program for data placement
lower latency when data is local
less communication when avoid false sharing

* but can do data placement if it is crucial, but don’t
have to

» hardware maintains data coherence
» synchronize to order processor’'s accesses to shared data

« like uniprocessor code so parallelizing by programmer or
compiler is easier

= can focus on program semantics, not interprocessor
communication

Fall 2004 CSE 471

12

Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software)
overlap of communication & computation

latency-hiding techniques can be applied to message passing
machines

+ higher bandwidth for small transfers
usually the only choice

Fall 2004 CSE 471 13

Shared Memory vs. Message Passing

abstraction in the programming model encapsulates the
communication costs but

more complex programming model

additional language constructs

need to program for nearest neighbor communication
no coherency hardware
good throughput on large transfers but

what about small transfers?

more scalable (memory latency doesn’t scale with the number of
processors) but

large-scale SM has distributed memory also

so you're going to adopt the message-passing
model?

Fall 2004 CSE 471 14

Shared Memory vs. Message Passing

Why there was a debate
« little experimental data
* not separate implementation from programming model
« can emulate one paradigm with the other

e MP on SM machine
message buffers in local (to each processor) memory
copy messages by ld/st between buffers
e SM on MP machine
Id/st becomes a message copy
sloooooooooow

Who won?

Fall 2004 CSE 471

15

