Directory Implementation

Distributed memory
» each processor (or cluster of processors) has its own memory

e processor-memory pairs are connected via a multi-path
interconnection network

» snooping with broadcasting is wasteful
e point-to-point communication instead

» aprocessor has fast access to its local memory & slower access to
“remote” memory located at other processors

* NUMA (non-uniform memory access) machines

How cache coherency is handled
* no caches (Tera (Cray) MTA)
« disallow caching of shared data (Cray 3TD)
» hardware directories that record cache block state
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Directory Implementation

Coherency state is associated with memory blocks that are the size of
cache blocks

» cache state
e shared:

* at least 1 processor has the data cached & memory is up-
to-date

 block can be read by any processor
» exclusive:

1 processor (the owner) has the data cached & memory is
stale

» only that processor can write to it
* invalid:
* no processor has the data cached & memory is up-to-date
* How tell which processors have read/write access
« bit vector in which 1 means the processor has the data
 optimization: space for 4 processors & trap for more
* write bit
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Directory Implementation

Directories have different meanings (& therefore uses) to different
processors

* home node: where the memory location of an address resides (and
cached data may be there too)

» local node: where the request initiated

e remote node: alternate location for the data if this processor has
requested it

In satisfying a memory request:

* messages sent between the different nodes in point-to-point
communication

* messages get explicit replies

Some simplifying assumptions for using the protocol
» processor blocks until the access is complete
* messages processed in the order received
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Read Miss for an Uncached Block
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Read Miss for an Exclusive, Remote Block
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Write Miss for an Exclusive, Remote Block
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Directory Protocol Messages

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

— Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A

— Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
— Invalidate a shared copy at address A.
Fetch Home directory Remote cache A
— Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A
— Fetch the block at address A and send it to its home directory; invalidate the block in
the cache
Datavalue reply Home directory Local cache Data
— Return a data value from the home memory (read or write miss response)
Data write-back Remote cache Home directory A, Data

— Write-back a data value for address A (invalidate response)
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CPU ESM for a Cache Block

States identical to the snooping protocol
Transactions very similar

read & write misses sent to home directory

invalidate & data fetch requests to the node with the data
replace broadcasted read/write misses
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CPU FSM for a Cache Block (cache state)
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Directory FSM for a Memory Block

Same states and structure as for the cache block FSM
Tracks all copies of a memory block
Two state changes:

» update coherency state

« alter the number of sharers in the sharing set
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Directory FSM for a Memory Block (directory state)
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False Sharing

Processes share cache blocks, not data

Impact aggravated by:
* block size: why?
» cache size: why?
» large miss penalties: why?

Reduced by:
» coherency protocols (state per subblock)

« let cache blocks become incoherent as long as there is only
false sharing

* make them coherent if any processor true shares
« compiler optimizations (group & transpose, cache block padding)
» cache-conscious programming wrt initial data structure layout
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