Directory Implementation

Distributed memory
» each processor (or cluster of processors) has its own memory

e processor-memory pairs are connected via a multi-path
interconnection network

» snooping with broadcasting is wasteful
e point-to-point communication instead

» aprocessor has fast access to its local memory & slower access to
“remote” memory located at other processors

* NUMA (non-uniform memory access) machines

How cache coherency is handled
* no caches (Tera (Cray) MTA)
« disallow caching of shared data (Cray 3TD)
» hardware directories that record cache block state

Fall 2004 CSE 471

A High-end MP

Proc| $ Proc| $ Proc| $

Mem —— Mem —— Mem ——
Dir |— Dir |— Dir |—

e

< Interconnection network >

AAAAAARARARL,

Mem — Mem |— Mem |—

Dir - — Dir |— Dir |—
Proc| $ Proc| $ Proc| $

Fall 2004 CSE 471

Directory Implementation

Coherency state is associated with memory blocks that are the size of
cache blocks

» cache state
e shared:

* at least 1 processor has the data cached & memory is up-
to-date

 block can be read by any processor
» exclusive:

1 processor (the owner) has the data cached & memory is
stale

» only that processor can write to it
* invalid:
* no processor has the data cached & memory is up-to-date
* How tell which processors have read/write access
« bit vector in which 1 means the processor has the data
 optimization: space for 4 processors & trap for more
* write bit

Fall 2004 CSE 471 3

Directory Implementation

Directories have different meanings (& therefore uses) to different
processors

* home node: where the memory location of an address resides (and
cached data may be there too)

» local node: where the request initiated

e remote node: alternate location for the data if this processor has
requested it

In satisfying a memory request:

* messages sent between the different nodes in point-to-point
communication

* messages get explicit replies

Some simplifying assumptions for using the protocol
» processor blocks until the access is complete
* messages processed in the order received

Fall 2004 CSE 471 4

Read Miss for an Uncached Block

Mem |—

l 2: datavalue reply

Mem —

P4

1: read miss

P1

CSE 471

Fall 2004

Read Miss for an Exclusive, Remote Block

13: data write-back

Mem —

Dir

2: fetch
4: data value reply

|

Mem —

P4

1: read miss

P1

CSE 471

Fall 2004

Write Miss for an Exclusive, Remote Block

P2 | $ P3 | $

2: fetch & invalidate 3 datawrite-back

4: data value reply Dir

1: write miss

PL | $ P4 | $

Fall 2004 CSE 471 7

Directory Protocol Messages

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

— Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A

— Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
— Invalidate a shared copy at address A.
Fetch Home directory Remote cache A
— Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A
— Fetch the block at address A and send it to its home directory; invalidate the block in
the cache
Datavalue reply Home directory Local cache Data
— Return a data value from the home memory (read or write miss response)
Data write-back Remote cache Home directory A, Data

— Write-back a data value for address A (invalidate response)
Fall 2004 CSE 471 8

CPU ESM for a Cache Block

States identical to the snooping protocol
Transactions very similar

read & write misses sent to home directory

invalidate & data fetch requests to the node with the data
replace broadcasted read/write misses

Fall 2004 CSE 471

CPU FSM for a Cache Block (cache state)

Invalidate
Invalid | K|
CPU read miss
- Send read miss

CPU write
Send write miss

CPU read hit

Shared
(read/only)

CPU read miss
Send read miss
Fetch/Invalidate

Send data write-back

CPU write
Send invalidate (write miss)
etch

Send data write-back

Read miss
Send data write-back
Send read miss

rite miss
) ata write-back
CPU writgf Ad write miss
Fall 2004 SE 471

10

Directory FSM for a Memory Block

Same states and structure as for the cache block FSM
Tracks all copies of a memory block
Two state changes:

» update coherency state

« alter the number of sharers in the sharing set

Fall 2004 CSE 471 11

Directory FSM for a Memory Block (directory state)

Read miss
Read miss Send data value reply
Send data value Sharers += =0

reply
arers ={P}, W=0

Shared

Uncached (read only)

Write miss Write miss
i i

(Data write-back) rSeer:d data value

Sharers = {} Ply

Sharers = {(Py/v = p Sharers

Write miss
Send fetch/invalidate to
current owner

(Data write-back)
Send data value reply,
Sharers ={P}, W=P

Read miss

Send data fetch to current owner
(Data write-back)

Send data value reply

Sharers +={P}, W =0

Exclusive
(read/write)

Send invalidate to all

Send data value reply
Sharers ={P}, W=P

False Sharing

Processes share cache blocks, not data

Impact aggravated by:
* block size: why?
» cache size: why?
» large miss penalties: why?

Reduced by:
» coherency protocols (state per subblock)

« let cache blocks become incoherent as long as there is only
false sharing

* make them coherent if any processor true shares
« compiler optimizations (group & transpose, cache block padding)
» cache-conscious programming wrt initial data structure layout

Fall 2004 CSE 471 13

