
Fall 2004 CSE 471 1

Cache Coherency

Cache coherent processors
• reading processor must get the most current value
• most current value is the last write

Cache coherency problem
• updates from 1 processor not known to others

Mechanisms for maintaining cache coherency
• cache coherency protocols
• coherency state associated with a block of data
• bus/interconnect operations on shared data change the state

• for the processor that initiates an operation
• for other processors that have the data of the operation 

resident in their caches

Fall 2004 CSE 471 2

A Low-end MP



Fall 2004 CSE 471 3

Cache Coherency Protocols

Write-invalidate
(Sequent Symmetry, SGI Power/Challenge, SPARCCenter 2000)
• processor obtains exclusive access for writes (becomes the 

“owner”) by invalidating data in other processors’ caches
• coherency miss (invalidation miss)
• cache-to-cache transfers
• good for:

• multiple writes to same word or block by one processor
• migratory sharing from processor to processor

• a problem is false sharing
• processors read & write to different words in a shared cache 

block
• cache coherency is maintained on a cache block basis

• block ownership bounces between processor caches

Fall 2004 CSE 471 4

A Low-end MP



Fall 2004 CSE 471 5

A Low-end MP

Fall 2004 CSE 471 6

Cache Coherency Protocols

Write-update

(SPARCCenter 2000)

• broadcast each write to actively shared data

• each processor with a copy snarfs the data

• good for inter-processor contention

Competitive

• switches between them

We will focus on write-invalidate.



Fall 2004 CSE 471 7

A Low-end MP

Fall 2004 CSE 471 8

Cache Coherency Protocol Implementations

Snooping

• used with low-end MPs

• few processors

• centralized memory

• bus-based

Directory-based

• used with higher-end MPs

• more processors

• distributed memory

• multipath interconnect



Fall 2004 CSE 471 9

Snooping Implementation

A distributed coherency protocol
• coherency state associated with each cache block
• each snoop maintains coherency for its own cache

How the bus is used
• broadcast medium
• entire coherency operation is atomic wrt other processors

• keep-the-bus protocol: master holds the bus until the entire 
operation has completed

• split-transaction buses: 
• request & response are different phases
• state value that indicates that an operation is in progress
• do not initiate another operation for a cache block that has 

one in progress

Fall 2004 CSE 471 10

Snooping Implementation

Snoop implementation:

• separate tags & state for snoop lookups

• processor & snoop communicate for a state or tag change

• snoop on the highest level cache

• another reason it is a physically-accessed cache

• property of inclusion: 

• all blocks in L1 are in L2

• therefore only have to snoop on L2

• may need to update L1 state if change L2 state



Fall 2004 CSE 471 11

An Example Snooping Protocol

Invalidation-based coherency protocol

Each cache block is in one of three states

• shared:

• clean in all caches & up-to-date in memory

• block can be read by any processor

• exclusive: 

• dirty in exactly one cache

• only that processor can write to it

• invalid: 

• block contains no valid data

Fall 2004 CSE 471 12

State Transitions for a Given Cache Block

State transitions caused by:

• events incurred by the processor associated with the cache

• read miss, write miss, write on shared block

• events incurred by snooping on the bus as a result of other 
processor actions, e.g.,

• read miss by P1 makes P2’s block change from exclusive to 
shared

• write miss by P1 makes P2’s block change from exclusive 
to invalid



Fall 2004 CSE 471 13

State Machine (CPU side)

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU read miss

CPU write miss

CPU read hit

Place read op
on bus

Place write op 
on bus

CPU read miss
Write back block

CPU write
Place write op on bus

CPU read miss
Place read op 
on bus

CPU write miss
Write back cache block
Place write op on bus

CPU read hit

Place read op on bus

CPU write hit

Fall 2004 CSE 471 14

State Machine (Bus side: the snoop)

Invalid Shared
(read/only)

Exclusive
(read/write)

Write miss for this 
block
Write back the block

Read miss for this block
Write back the block

Write miss
for this block


