Introduction

Why memory subsystem design is important
e CPU speeds increase 55% per year
+ DRAM speeds increase 3% (5%7?) per year
¢ rate of increase is also widening
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Memory Hierarchy

Levels of memory with different sizes & speeds
* close to the CPU: small, fast access
¢ close to memory: large, slow access

Memory hierarchies improve performance
» caches: demand-driven storage
» principal of locality of reference
temporal: a referenced word will be referenced again soon
spatial: words near a reference word will be referenced soon
« speed/size trade-off in technology
= fast access for most references

First Cache: IBM 360/85 in the late ‘60s
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Cache organization

* Block:

Cache Review

« # bytes associated with 1 tag
 usually the # bytes transferred on a memory request

» Set: the blocks that can be accessed with the same index bits

* Associativity: an implementation that indicates a specific number of
blocks in a set

« direct mapped
* set associative
« fully associative

» Size: # bytes of

How do you calculate this?
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Logical Diagram of a Cache
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Cache Review

Accessing a cache

» number of index bits = log,(cache size / block size)
(for a direct mapped cache)

» number of index bits = log,(cache size /( block size * associativity))
(for a set-associative cache)
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Logical Diagram of a Set-associative Cache
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Design Tradeoffs

Cache size
the bigger the cache,
+ the higher the hit ratio
- the longer the access time
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Design Tradeoffs

Block size
the bigger the block,
+ the better the spatial locality
+ less block transfer overhead/block
+ less tag overhead/entry (assuming same number of entries)
- might not access all the bytes in the block
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Design Tradeoffs

Associativity
the larger the associativity,
+ the higher the hit ratio
- the larger the hardware cost (comparator/set)
- the longer the hit time (a larger MUX)
- need block replacement hardware
- increase in tag bits (if same size cache)

Associativity is more important for small caches than large

because more memory locations map to the same line
e.g., !
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Design Tradeoffs

Memory update policy

» performance depends on the # of writes
« write buffer decreases this

» check on load misses

e store compression

« performance depends on the # of dirty block replacements
but...
« dirty bit & logic for checking it
« tag check before the write
¢ must flush the cache before 1/0O
« optimization: fetch before replace
« both use a merging write buffer
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Design Tradeoffs

Cache contents

instruction & data caches
* separate access = double the bandwidth
« different configurations for | & D
« shorter access time

cache

* lower miss rate
« less cache controller hardware
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Review of Address Translation

Address translation:
e maps a virtual address to a physical address, using the page tables
« number of page offset bits =
Translation Lookaside Buffer (TLB):
« (often) associative cache of most recently translated virtual-to-physical
page mappings
* 64/128-entry, fully associative
* 4-8 byte blocks
e .5 -1 cycle hit time
 low tens of cycles miss penalty

* misses can be handled in software, software with hardware assists,
firmware or hardware

« works because of locality of reference
* much faster than address translation using the page tables
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Using a TLB

(1) Access a TLB using the virtual page number.
(2) If ahit,

concatenate the physical page number & the page offset bits, to form
a physical address;
set the
if writing, set the
(3) Ifamiss,
get the physical address from the page table;

evict a TLB entry & update dirty/reference bits in the page table;
update the TLB with the new mapping.
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Design Tradeoffs

Virtual or physical addressing

access with a virtual address (index & tag)
do address translation on a cache miss
faster for hits because no address translation
compiler support for better data placement

+

+
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Design Tradeoffs

- need to flush the cache on a context switch
 process identification (PID) can avoid this
- synonyms

« if 2 processes are sharing data, two (different) virtual
addresses map to the same physical address

« 2 copies of the same data in the cache
« on a write, only one will be updated; so the other has old data
» asolution: page coloring

* processes share segments, so all data aliases have the
same low-order bits, i.e., same offset from the beginning of a
segment

» cache must be <= the segment size
(more precisely, each set of the cache must be <= the
segment size)

 index taken from offset, tag compare on segment #
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Design Tradeoffs

Virtual or physical addressing
addressed caches
« do address translation on every cache access
* access with a physical index & compare with physical tag

- if a straightforward implementation, hit time increases because must
translate the virtual address before access the cache

+ increase in hit time can be avoided if address translation is done in
parallel with the cache access

« restrict cache size so that cache index bits are in the page
offset (virtual & physical bits are the same):

¢ access the TLB at the same time

« compare the physical tag from the cache to the physical
address (page frame #) from the TLB:

e can increase cache size by increasing associativity, but still use
page offset bits for the index

+ no cache flushing on a context switch
+ no synonym problem
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Cache Hierarchies

Cache hierarchy
« different caches with different sizes & access times & purposes
+ decrease effective memory access time:
* many misses in the L1 cache will be satisfied by the L2 cache
« avoid going all the way to memory
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Cache Hierarchies
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Cache Hierarchies

« small, so can access it in one (or few) CPU cycle
(also some chip real estate concerns)

« virtually-accessed, so cache accesses can be fast without constraints
on cache size

¢ direct mapped or set associative?
« direct mapped: faster access

« set associative: better hit ratio & larger cache while still accessing
with virtual address

« often write-through
« separate caches for instructions & data
* each is smaller than a unified cache, so the access time is lower
« need the instruction/data parallel access in a pipelined processor
« configured differently:
« instruction cache may have larger blocks
« instruction cache has no write-back hardware & dirty bits
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Cache Hierarchies
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Cache Hierarchies

* big cache, so it will have a high hit ratio

¢ physically-addressed:
« plenty of time to do address translation
 no flushing on a context switch

« direct mapped:

« big direct-mapped caches have almost the same hit ratio as big set-
associative caches

« slightly less hardware cost

« unified, because its hit ratio is higher than that of two separate caches
(I&D) half the size

* write-back
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Review of Cache Metrics

Hit (miss) ratio =  #hits (#misses)
Htreferences
* measures how well the cache functions

« useful for understanding cache behavior relative to the number of
references

« intermediate metric
Effective access time = HitTime + Miss Ratio « Miss Penalty

e (rough) average time it takes to do a memory reference

+ performance of the memory system, including factors that depend on the
Implementation

¢ intermediate metric
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Measuring Cache Hierarchy Performance

Effective Access Time for a cache hierarchy:...

Hittime; ; + Miss ratio}; » Miss penalty |,

Hittime; , + Miss ratio;, » Miss penalty |,
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Measuring Cache Hierarchy Performance
Local Miss Ratio: ~ #misses o o - he!
ffaccesses ’
« # accesses for the L1 cache: the number of references
* # accesses for the L2 cache: the number of misses in the L1 cache
Example: 1000 references
40 L1 misses
10 L2 misses
local MR (L1):
local MR (L2):
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Measuring Cache Hierarchy Performance

Global Miss Ratio: halMR - S imisseHinicacne
globa # references generated by CPU

Example: 1000 References
40 L1 misses
10 L2 misses

global MR (L1):

global MR (L2):
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Miss Classification

Usefulness is in providing insight into the causes of misses
¢ does not explain what caused particular, individual misses

Compulsory

« first reference misses

« decrease by increasing block size
Capacity

¢ due to finite size of the cache

« decrease by increasing cache size
Conflict

« too many blocks map to the same set

« decrease by increasing associativity
Coherence (invalidation)

« decrease by decreasing block size + improving processor locality
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