
VLIW CSE 471 Autumn 02 1

A (naïve) Primer on VLIW – EPIC
with slides borrowed/edited from an Intel-HP presentation

• VLIW direct descendant of horizontal microprogramming
– Two commercially unsuccessful machines: Multiflow and

Cydrome

• Compiler generates instructions that can execute together
– Instructions executed in order and assumed to have a fixed latency

• Difficulties occur with unpredictable latencies :
– Branch prediction -> Use of predication in addition to static and

dynamic branch prediction

– Pointer-based computations -> Use cache hints and speculative
loads

VLIW CSE 471 Autumn 02 2

IA-64 : Explicitly Parallel Architecture

• IA-64 template specifies
– The type of operation for each instruction, e.g.

• MFI, MMI, MII, MLI, MIB, MMF, MFB, MMB, MBB, BBB
– Intra-bundle relationship, e.g.

• M / MI or MI / I (/ is a “stop” meaning no parallelism)
– Inter-bundle relationship

• Most common combinations covered by templates
– Headroom for additional templates

• Simplifies hardware requirements
• Scales compatibly to future generations

Instruction 2Instruction 2
41 bits41 bits

Instruction 1Instruction 1
41 bits41 bits

Instruction 0Instruction 0
41 bits41 bits

TemplateTemplate
5 bits5 bits

128 bits (bundle)128 bits (bundle)

M=MemoryM=Memory
F=FloatingF=Floating--pointpoint
I=IntegerI=Integer
L=Long ImmediateL=Long Immediate
B=BranchB=Branch

(MMI)(MMI)Memory (M)Memory (M) Memory (M)Memory (M) Integer (I)Integer (I)

VLIW CSE 471 Autumn 02 3

(Merced) Itanium implementation

• Can execute 2 bundles (6 instructions) per cycle

• 10 stage pipeline

• 4 integer units (2 of them can handle load-store), 2 f-p
units and 3 branch units

• Issue in order, execute in order but can complete out of
order. Uses a (restricted) register scoreboard technique to
resolve dependencies.

VLIW CSE 471 Autumn 02 4

Itanium implementation (?)

• Predication reduces number of branches and number of
mispredicts,

• Nonetheless: sophisticated branch predictor
– Compiler hints: BPR instruction provides “easy” to predict branch

address; reduces number of entries in BTB

– Two-level hardware prediction Sas (4,2) (512 entry local history
table 4-way set-associative, indexing 128 PHT –one per set- each
with 16 entries –2-bit saturating counters). Number of bubbles on
predicted branch taken: 2 or 3

– And a 64-entry BTB (only 1 cycle stall) + return stack

– Mispredicted branch penalty: 9 cycles

VLIW CSE 471 Autumn 02 5

Itanium implementation (?)

• There are “instruction queues” between the fetch unit and
the execution units. Therefore branch bubbles can often be
absorbed because of long latencies (and stalls) in the
execute stages

VLIW CSE 471 Autumn 02 6

IA-64 for High Performance

• Number of branches in large server apps overwhelm traditional
processors

– IA-64 predication removes branches, avoids mispredicts

– Alas, full predication, i.e., predicating every instruction, does not
improve performance as much as one would hope and is often
detrimental (e.g., instructions are longer hence I-cache miss rate could be
higher)

• Environments with a large number of users require high
performance

– IA-64 uses speculation to reduce impact of memory latency

– 64-bit addressing enables systems with very large virtual and physical
memory

VLIW CSE 471 Autumn 02 7

Middle Tier Application Needs

• Mid-tier applications have diverse code requirements
– Integer code with many small loops

– Significant call / return requirements (C++, Java)

• IA-64’s register model supports these various requirements
– Large register file provides significant resources for optimized

performance

– Register stack to handle call-intensive code

– Rotating registers enables efficient loop execution

VLIW CSE 471 Autumn 02 8

IA-64’s Large Register File

BR7BR7

BR0BR0

Branch Branch
RegistersRegisters

6363 00

96 Stacked, Rotating96 Stacked, Rotating

GR1GR1

GR31GR31

GR127GR127

GR32GR32

GR0GR0

NaTNaT 32 Static32 Static

00

Integer RegistersInteger Registers
6363 00

PredicatePredicate
RegistersRegisters

11

PR1PR1

PR63PR63

PR0PR0

PR15PR15

PR16PR16

48 Rotating48 Rotating

16 Static16 Static

bit 0bit 0

96 Rotating96 Rotating

GR1GR1

GR31GR31

GR127GR127

GR32GR32

GR0GR0

32 Static32 Static

0.00.0

FloatingFloating--Point Point
RegistersRegisters

8181 00

VLIW CSE 471 Autumn 02 9

Traditional Register ModelsTraditional Register Models Traditional Register StacksTraditional Register Stacks

AABB

MemoryMemoryRegisterRegister

AA

Traditional Register Models

• Procedure A calls procedure B

• Procedures must share space in
register

• Performance penalty due to
register save / restore

AA

BB

CC

DD

AA

BB

CC

DD

• Eliminate the need for save / restore by
reserving fixed blocks in register

• However, fixed blocks waste resources

RegisterRegisterProcedureProcedure ProceduresProcedures

?
I think that the “traditional register stack” model
they refer to is the “register windows” model used
in Sparc

VLIW CSE 471 Autumn 02 10

Traditional Register StacksTraditional Register Stacks

IA-64 Register Stack

AA

BB

CC

DD

AA

BB

CC

DD

• Eliminate the need for save / restore by reserving fixed
blocks in register

• However, fixed blocks waste resources

RegisterRegisterProceduresProcedures

IAIA--64 Register Stack64 Register Stack

AA

BB

CC

AA

BB
CC
DD

RegisterRegisterProceduresProcedures

• IA-64 able to reserve variable
block sizes

• No wasted resources

DD
?

DD

DD

VLIW CSE 471 Autumn 02 11

Software pipelining

• Reorganize loops with loop-carried dependences by
“symbolically” unrolling them
– New code : statements of distinct iterations of original code

– Take an “horizontal” slice of several (dependent) iterations

Iter. i Iter. i + 1 Iter. i + 2

Store x[i]
Use x[i]

Load x[i]

Original code New code

Store x[i]

Use x[i-1]
Load x[i-2]

dependence

VLIW CSE 471 Autumn 02 12

Software Pipelining via Rotating Registers

• Traditional architectures need complex software loop unrolling for pipelining

– Results in code expansion --> Increases cache misses --> Reduces performance

• IA-64 utilizes rotating registers (r0 ->r1, r1 -> r2 etc in successive iterations) to
achieve software pipelining

– Avoids code expansion --> Reduces cache misses --> Higher performance

Sequential Loop ExecutionSequential Loop Execution

T
im

e
T

im
e

Software Pipelining Loop ExecutionSoftware Pipelining Loop Execution

T
im

e
T

im
e

VLIW CSE 471 Autumn 02 13

IAIA--64 Floating64 Floating--Point Architecture Point Architecture

• 128 registers
– Allows parallel execution of multiple floating-point operations

• Simultaneous Multiply - Accumulate (FMAC)
– 3-input, 1-output operation : a * b + c -> d
– Shorter latency than independent multiply and add

– Greater internal precision and single rounding error

MemoryMemory
128 FP128 FP

RegisterRegister
FileFile

Multiple read portsMultiple read ports

Multiple write portsMultiple write ports

.FMAC #1FMAC #1 FMAC #2FMAC #2

AA BB CC

DD

XX ++

(82 bit floating point numbers)(82 bit floating point numbers)

FMACFMAC FMACFMAC

VLIW CSE 471 Autumn 02 14

Predication Basic Idea

• Associate a Boolean condition (predicate) with the issue,
execution, or commit of an instruction
– The stage in which to test the predicate is an implementation

choice

• If the predicate is true, the result of the instruction is kept

• If the predicate is false, the instruction is nullified

• Distinction between
– Partial predication: only a few opcodes can be predicated

– Full predication: every instruction is predicated

VLIW CSE 471 Autumn 02 15

Predication Benefits

• Allows compiler to overlap the execution of independent
control constructs w/o code explosion

• Allows compiler to reduce frequency of branch
instructions and, consequently, of branch mispredictions

• Reduces the number of branches to be tested in a given
cycle

• Reduces the number of multiple execution paths and
associated hardware costs (copies of register maps etc.)

• Allows code movement in superblocks

VLIW CSE 471 Autumn 02 16

Predication Costs

• Increased fetch utilization

• Increased register consumption

• If predication is tested at commit time, increased
functional-unit utilization

• With code movement, increased complexity of exception
handling
– For example, insert extra instructions for exception checking

VLIW CSE 471 Autumn 02 17

Flavors of Predication Implementation

• Has its roots in vector machines like CRAY-1
– Creation of vector masks to control vector operations on an

element per element basis

• Often (partial) predication limited to conditional moves as,
e.g., in the Alpha, MIPS 10000, Power PC, SPARC and
the Pentium Pro

• Full predication: Every instruction predicated as in IA-64

VLIW CSE 471 Autumn 02 18

Partial Predication: Conditional Moves

• CMOV R1, R2, R3
– Move R2 to R1 if R3 = 0

• Main compiler use: If (cond) S1 (with result in Rres)
– (1) Compute result of S1 in Rs1;

– (2) Compute condition in Rcond;

– (3) CMOV Rres, Rs1, Rcond

• Increases register pressure (Rcond is general register)

• No need (in this example) for branch prediction

• Very useful if condition can be computed ahead or, e.g., in
parallel with result.

VLIW CSE 471 Autumn 02 19

Other Forms of Partial Predication

• Select dest, src1, src2,cond
– Corresponds to C-like --- dest = ((cond) ? src1 : src2)

– Note the destination register is always assigned a value

– Use in the Multiflow (first commercial VLIW machine)

• Nullify
– Any register-register instruction can nullify the next instruction,

thus making it conditional

VLIW CSE 471 Autumn 02 20

Full Predication

• Define predicates with instructions of the form:
Pred_<cmp> Pout1<type> , Pout2<type>,, src1, src2 (Pin) where

– Pout1 and Pout2 are assigned values according to the comparison
between src1 and src2 and the cmp “opcode”

– The predicate types are most often U (unconditional) and U its
complement, and OR and OR

– The predicate define instruction can itself be predicated with the
value of Pin

• There are definite rules for that, e.g., if Pin = 0, U and U are set to 0
independently of the result of the comparison and the OR predicates
are not modified.

VLIW CSE 471 Autumn 02 21

If-conversion

The if condition will set
p1 to U

The then will be executed
predicated on p1(U)

The else will be executed
predicated on p1(U)

The “join” will in general
be predicated on some
form of OR predicate

if

then else

join

