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Computer Design and Organization

• Architecture = Design + Organization + Performance
• Architecture of modern computer systems

– Central processing unit: deeply pipelined, able to exploit 
instruction level parallelism (several functional units), support for 
speculation (branch prediction, spec. loads), and for multiple 
contexts (multithreading).

– Memory hierarchy: multi-level cache hierarchy, includes hardware 
and software assists for enhanced performance; interaction of 
hardware/software for virtual memory systems.

– Input/output: Buses; Disks – performance and reliability (RAIDs).
– Multiprocessors: SMP’s (and soon CMP – Chip MultiProcessor) 

and cache coherence.
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Technological improvements

• CPU :
– Annual rate of speed improvement is 35% before 1985 and 60% 

since 1985

– Slightly faster than increase in number of transistors on-chip

• Memory:
– Annual rate of speed improvement (decrease in latency) is < 10%

– Density quadruples in 3 years.

• I/O :
– Access time has improved by 30% in 10 years

– Density improves by 50% every year
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Moore’s Law

Review CSE 471 Autumn 02 4

Processor-Memory Performance Gap

10

100

1000

1
89          91          93          95          97          99  01

• x Memory latency decrease (10x over 8 years but densities have increased 
100x over the same period)

• o x86 CPU speed (100x over 10 years)

“Memory gap”

“Memory wall”

x x

x
x x

x
o

o

o
o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

Review CSE 471 Autumn 02 5

Improvements in Processor Speed

• Technology
– Faster clock (commercially over 2 GHz available; prototype > 6 GHz?)

• More transistors = More functionality
– Exploit Instruction Level Parallelism (ILP) with multiple functional units; 

superscalar or out-of-order execution (OOO)
– 40 Million transistors (Pentium 4) but Moore law still applies (transistor 

count doubles every 18 months)

• Extensive pipelining
– From single 5 stage to multiple pipes as deep as 20-30 stages

• Sophisticated instruction fetch and decode units 
– Branch prediction; register renaming; speculative loads

• On-chip Memory
– One or two levels of caches (D-caches, I- or trace caches). TLB’s for 

instruction and data
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Performance evaluation basics

• Performance inversely proportional to execution time

• Elapsed time includes:
user + system; I/O; memory accesses; CPU per se

• CPU execution time (for a given program): 3 factors
– Number of instructions executed

– Clock cycle time (or rate)

– CPI: number of cycles per instruction (or its inverse IPC)

CPU execution time = Instruction count * CPI * clock cycle time
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Components of the CPI

• CPI for single instruction issue with ideal pipeline = 1

• Previous formula can be expanded to take into account 
classes of instructions 
– For example in RISC machines: branches, f.p., load-store.

– For example in CISC machines: string instructions

CPI = Σ CPIi * fi where fi is the frequency of instructions in class i

• Will talk about “contributions to the CPI” from, e.g,:
– memory hierarchy

– branch (misprediction)

– hazards etc.
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Comparing and summarizing benchmark 
performance

• For execution times, use (weighted) arithmetic mean:

Weighted Ex. Time = Σ Weighti * Timei
• For rates, use  (weighted) harmonic mean:

Weighted Rate = 1 / Σ (Weighti / Rate i )
• As per Jim Smith (1988 – CACM)

“Simply put, we consider one computer to be faster than another if it 
executes the same set of programs in less time”

• Common benchmark suite: SPEC for int and fp (SPEC92, 
SPEC95, SPEC00), SPECweb, SPECjava etc., Ogden 
benchmark (linked lists), multimedia etc.
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Computer design: Make the common case fast

• Amdahl’s law (speedup)
Speedup = (performance with enhancement)/(performance base case)
Or equivalently

Speedup = (exec.time base case)/(exec.time with enhancement)

• Application to parallel processing
– s fraction of program that is sequential
– Speedup S is at most 1/s
– That is if 20% of your program is sequential the maximum 

speedup with an infinite number of processors is at most  5
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Pipelining

• One instruction/result every cycle (ideal)
– Not in practice because of hazards

• Increase throughput (wrt non-pipelined implementation)
– Throughput = number of results/second

• Speed-up (over non-pipelined implementation)
– In the ideal case, if n stages , the speed-up will be close to n. Can’t 

make n too large: load balancing between stages & hazards 

• Might slightly increase the latency of individual 
instructions (pipeline overhead)
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Basic pipeline implementation

• Five stages: IF, ID, EXE, MEM, WB

• What are the resources needed and where
– ALU’s, Registers, Multiplexers etc.

• What info. is to be passed between stages
– Requires pipeline registers between stages: IF/ID, ID/EXE, 

EXE/MEM and MEM/WB

– What is stored in these pipeline registers?

• Design of the control unit.
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Hazards

• Structural hazards
– Resource conflict (mostly in multiple instruction issue machines; 

also for resources which are used for more than one cycle see later)

• Data dependencies 
– Most common RAW but also WAR and WAW in OOO execution

• Control hazards
– Branches and other flow of control disruptions

• Consequence: stalls in the pipeline
– Equivalently: insertion of bubbles or of no-ops
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Pipeline speed-up
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Example of structural hazard

• For single issue machine: common data and instruction 
memory (unified cache)
– Pipeline stall every load-store instruction (control easy to 

implement)

• Better solutions
– Separate I-cache and D-cache 

– Instruction buffers

– Both + sophisticated instruction fetch unit!

• Will see more cases in multiple issue machines
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Data hazards

• Data dependencies between instructions that are in the pipe 
at the same time.

• For single pipeline in order issue: Read After Write hazard 
(RAW)

Add R1, R2, R3 #R1 is result register

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #conflict with R1

Or R6,R1,R2 #conflict with R1

Add        R5, R2, R1 #R1 OK now (5 stage pipe)
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Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK

IF            ID          EXE       MEM        WB

OK if in ID stage one can write 
In 1st part of cycle and read in 2nd part
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Forwarding

• Result of ALU operation is known at end of EXE stage
• Forwarding between:

– EXE/MEM pipeline register to ALUinput for instructions i and i+1
– MEM/WB pipeline register to ALUinput for instructions i and i+2 

• Note that if the same register has to be forwarded, forward the last 
one to be written (see two slides from now)

– Forwarding through register file (write 1st half of cycle, read 2nd 
half of cycle)

• Need of a “forwarding box” in the Control Unit to check 
on conditions for forwarding

• Forwarding between load and store (memory copy) 
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Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK w/o forwarding

IF            ID          EXE       MEM        WB
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Forwarding in consecutive instructions

• What happens if we have
add   $10,$10,$12

add   $10,$10,$12

add   $10,$10,$12

Forwarding priority is given to the most recent result, that is the one 
generated by the ALU in the EX/Mem, not the one passed to 
Mem/Wb (requires extra check to see whether this situation arises)
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Other data hazards

• Write After Write (WAW). Can happen in 
– Pipelines with more than one write stage

– More than one functional unit with different latencies (see later)

• Write After Read (WAR). Very rare
– With VAX-like autoincrement addressing modes
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Forwarding cannot solve all conflicts

• For example, in a simple MIPS-like pipeline

Lw R1, 0(R2) #Result at end of MEM stage

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #OK with forwarding

Or R6,R1,R2 # OK with forwarding
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LW  R1, 0(R2)
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Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1
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IF            ID          EXE       MEM        WB
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Insert a bubble
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Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i that 
needs the result of the load, we need to stall the pipeline 
for one cycle , that is
– instruction i-1 should progress normally

– instruction i should not progress

– no new instruction should be fetched

• Controlled by a “hazard detection box” within the Control 
unit; it should operate during the ID stage
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Control Hazards

• Branches (conditional, unconditional, call-return)

• Interrupts: asynchronous event (e.g., I/O)
– Occurrence of an interrupt checked at every cycle

– If an interrupt has been raised, don’t fetch next instruction, flush 
the pipe, handle the interrupt (see later in the quarter)

• Exceptions (e.g., arithmetic overflow, page fault etc.)
– Program and data dependent (repeatable), hence “synchronous”
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Exceptions

• Occur “within” an instruction, for example:
– During IF: page fault

– During ID: illegal opcode

– During EX: division by 0 

– During MEM: page fault; protection violation

• Handling exceptions
– A pipeline is restartable if the exception can be handled and the 

program restarted w/o affecting execution
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Precise exceptions

• If exception at instruction i then 
– Instructions i-1, i-2 etc complete normally (flush the pipe)
– Instructions i+1, i+2 etc. already in the pipeline will be “no-oped” 

and will be  restarted from scratch after the exception has been 
handled

• Handling precise exceptions: Basic idea
– Force a trap instruction on the next IF
– Turn off writes for all instructions i and following 
– When the target of the trap instruction receives control, it saves the 

PC of the instruction having the exception
– After the exception has been handled, an instruction “return from 

trap” will restore the PC.
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Precise exceptions (cont’d)

• Relatively simple for integer pipeline
– All current machines have precise exceptions for integer and load-

store operations

• Can lead to loss of performance for pipes with multiple 
cycles execution stage (f-p see later)
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Integer pipeline (RISC) precise exceptions

• Recall that exceptions can occur in all stages but WB

• Exceptions must be treated in instruction order
– Instruction i starts at time t

– Exception in MEM stage at time t + 3 (treat it first)

– Instruction i + 1 starts at time t +1

– Exception in IF stage at time t + 1 (occurs earlier but treat in 2nd)
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Treating exceptions in order

• Use pipeline registers
– Status vector of possible exceptions carried on with the instruction.

– Once an exception is posted, no writing (no change of state; easy 
in integer pipeline -- just prevent store in memory)

– When an instruction leaves  MEM stage, check for exception.
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Difficulties in less RISCy environments

• Due to instruction set (“long” instructions”)
– String instructions (but use of general registers to keep state)

– Instructions that change state before last stage (e.g., autoincrement
mode in Vax and update addressing in Power PC) and these 
changes are needed to complete inst. (require ability to back up)

• Condition codes
– Must remember when last changed

• Multiple cycle stages (see later)
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Principle of Locality: Memory Hierarchies

• Text and data are not accessed randomly
• Temporal locality

– Recently accessed items will be accessed in the near future (e.g., 
code in loops, top of stack)

• Spatial locality
– Items at addresses close to the addresses of recently accessed items 

will be accessed in the near future (sequential code, elements of 
arrays)

• Leads to memory hierarchy at two main interface levels:
– Processor - Main memory -> Introduction of caches
– Main memory - Secondary memory -> Virtual memory (paging 

systems)
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Caches (on-chip, off-chip)

• Caches consist of a set of entries where each entry has:
– block (or line) of data: information contents (initially, the image of 

some main memory contents)

– tag: allows to recognize if the block is there (depends on the 
mapping)

– status bits: valid, dirty, state for multiprocessors etc.

• Capacity (or size) of a cache: number of blocks *block size
i.e., the cache metadata (tag + status bits) is not counted in the cache capacity

• Notation
– First-level (on-chip) cache: L1; 

– Second-level (on-chip/off-chip): L2; third level (Off-chip) L3
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Cache Organization -- Direct-mapped

• Most restricted mapping
– Direct-mapped cache. A given memory location (block) can only 

be mapped in a single place in the cache. This place is (generally) 
given by:

(block address) mod (number of blocks in cache)

– To make the mapping easier, the number of blocks in a direct-
mapped cache is (almost always)a power of 2.
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Fully-associative Cache

• Most general mapping
– Fully-associative cache. A given memory location (block) can be 

mapped anywhere in the cache. 

– No cache of decent size is implemented this way but this is the 
(general) mapping for pages (disk to main memory), for small 
TLB’s, and for some small buffers used as cache assists (e.g., 
victim caches, write caches).

Review CSE 471 Autumn 02 40

Fully-associative Cache
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Set-associative Caches

• Less restricted mapping
– Set-associative cache. Blocks in the cache are grouped into sets 

and a given memory location (block) maps into a set. Within the 
set the block can be placed anywhere. Associativities of 2 (two-
way set-associative), 3, 4, 8 and even 16 have been implemented.

• Direct-mapped = 1-way set-associative

• Fully associative with m entries is m-way set associative

• Capacity
– Capacity = number of sets * set-associativity * block size
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Set-associative Cache
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Main memory
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specific block of either set
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Cache Hit or Cache Miss?

• How to detect if a memory address (a byte address) has a 
valid image in the cache:

• Address is decomposed into 3 fields:
– block offset or displacement (depends on block size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag 
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Hit Detection

tag index displ.

Example: cache capacity C, block size b

Direct mapped: displ = log2 b; index = log2(C/ b); tag = 32 -index - displ

N -way S.A: displ = log2 b; index = log2(C/ bN); tag = 32 -index – displ
(this assumes N is a power of 2)

So what does it mean to have 3-way (N=3) set-associativity?
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Why Set-associative Caches?

• Cons
– The higher the associativity the larger the number of comparisons to be 

made in parallel for high-performance (can have an impact on cycle time
for on-chip caches)

– Higher associativity requires a wider tag array (minimal impact)

• Pros
– Better hit ratio

– Great improvement from 1 to 2, less from 2 to 4, minimal after that but 
can still be important for large L2 caches

– Allows parallel search of TLB and of larger (by a factor proportional to 
the associativity) caches, thus potentially avoiding the great majority of 
the overhead of address translation in virtual memory systems
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Replacement Algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative caches
– Not an important factor for performance for low associativity. Can 

become important for large associativity and large caches
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Writing in a Cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or higher level cache) (write-
through) policy

• On a write miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)

Review CSE 471 Autumn 02 48

The Main Write Options

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory

– On a write miss, the most frequent option is write-around

– Pro: consistent view of memory (better for I/O); no ECC required
for cache

– Con: more memory traffic (can be alleviated with write buffers)

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but 
variations are possible

– Pro-con reverse of write through
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Classifying the Cache Misses: The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a block. Reduced (for a given cache 

capacity and associativity) by having large blocks

• Capacity misses
– The working set is too big for the ideal cache of same capacity and 

block size (i.e., fully associative with optimal replacement 
algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two blocks to the same location. Increasing

associativity decreases this type of misses.

• There is a fourth C: coherence misses (cf. multiprocessors)


