
Review CSE 471 Autumn 02 1

Computer Design and Organization

• Architecture = Design + Organization + Performance
• Architecture of modern computer systems

– Central processing unit: deeply pipelined, able to exploit
instruction level parallelism (several functional units), support for
speculation (branch prediction, spec. loads), and for multiple
contexts (multithreading).

– Memory hierarchy: multi-level cache hierarchy, includes hardware
and software assists for enhanced performance; interaction of
hardware/software for virtual memory systems.

– Input/output: Buses; Disks – performance and reliability (RAIDs).
– Multiprocessors: SMP’s (and soon CMP – Chip MultiProcessor)

and cache coherence.

Review CSE 471 Autumn 02 2

Technological improvements

• CPU :
– Annual rate of speed improvement is 35% before 1985 and 60%

since 1985

– Slightly faster than increase in number of transistors on-chip

• Memory:
– Annual rate of speed improvement (decrease in latency) is < 10%

– Density quadruples in 3 years.

• I/O :
– Access time has improved by 30% in 10 years

– Density improves by 50% every year

Review CSE 471 Autumn 02 3

Moore’s Law

Review CSE 471 Autumn 02 4

Processor-Memory Performance Gap

10

100

1000

1
89 91 93 95 97 99 01

• x Memory latency decrease (10x over 8 years but densities have increased
100x over the same period)

• o x86 CPU speed (100x over 10 years)

“Memory gap”

“Memory wall”

x x

x
x x

x
o

o

o
o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

Review CSE 471 Autumn 02 5

Improvements in Processor Speed

• Technology
– Faster clock (commercially over 2 GHz available; prototype > 6 GHz?)

• More transistors = More functionality
– Exploit Instruction Level Parallelism (ILP) with multiple functional units;

superscalar or out-of-order execution (OOO)
– 40 Million transistors (Pentium 4) but Moore law still applies (transistor

count doubles every 18 months)

• Extensive pipelining
– From single 5 stage to multiple pipes as deep as 20-30 stages

• Sophisticated instruction fetch and decode units
– Branch prediction; register renaming; speculative loads

• On-chip Memory
– One or two levels of caches (D-caches, I- or trace caches). TLB’s for

instruction and data

9/26/2002 Review CSE 471 Autumn 02 6

Performance evaluation basics

• Performance inversely proportional to execution time

• Elapsed time includes:
user + system; I/O; memory accesses; CPU per se

• CPU execution time (for a given program): 3 factors
– Number of instructions executed

– Clock cycle time (or rate)

– CPI: number of cycles per instruction (or its inverse IPC)

CPU execution time = Instruction count * CPI * clock cycle time

Review CSE 471 Autumn 02 7

Components of the CPI

• CPI for single instruction issue with ideal pipeline = 1

• Previous formula can be expanded to take into account
classes of instructions
– For example in RISC machines: branches, f.p., load-store.

– For example in CISC machines: string instructions

CPI = Σ CPIi * fi where fi is the frequency of instructions in class i

• Will talk about “contributions to the CPI” from, e.g,:
– memory hierarchy

– branch (misprediction)

– hazards etc.

Review CSE 471 Autumn 02 8

Comparing and summarizing benchmark
performance

• For execution times, use (weighted) arithmetic mean:

Weighted Ex. Time = Σ Weighti * Timei
• For rates, use (weighted) harmonic mean:

Weighted Rate = 1 / Σ (Weighti / Rate i)
• As per Jim Smith (1988 – CACM)

“Simply put, we consider one computer to be faster than another if it
executes the same set of programs in less time”

• Common benchmark suite: SPEC for int and fp (SPEC92,
SPEC95, SPEC00), SPECweb, SPECjava etc., Ogden
benchmark (linked lists), multimedia etc.

Review CSE 471 Autumn 02 9

Computer design: Make the common case fast

• Amdahl’s law (speedup)
Speedup = (performance with enhancement)/(performance base case)
Or equivalently

Speedup = (exec.time base case)/(exec.time with enhancement)

• Application to parallel processing
– s fraction of program that is sequential
– Speedup S is at most 1/s
– That is if 20% of your program is sequential the maximum

speedup with an infinite number of processors is at most 5

Review CSE 471 Autumn 02 10

Pipelining

• One instruction/result every cycle (ideal)
– Not in practice because of hazards

• Increase throughput (wrt non-pipelined implementation)
– Throughput = number of results/second

• Speed-up (over non-pipelined implementation)
– In the ideal case, if n stages , the speed-up will be close to n. Can’t

make n too large: load balancing between stages & hazards

• Might slightly increase the latency of individual
instructions (pipeline overhead)

Review CSE 471 Autumn 02 11

Basic pipeline implementation

• Five stages: IF, ID, EXE, MEM, WB

• What are the resources needed and where
– ALU’s, Registers, Multiplexers etc.

• What info. is to be passed between stages
– Requires pipeline registers between stages: IF/ID, ID/EXE,

EXE/MEM and MEM/WB

– What is stored in these pipeline registers?

• Design of the control unit.

Review CSE 471 Autumn 02 12

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Review CSE 471 Autumn 02 13

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Five instructions in progress; one of each color

Review CSE 471 Autumn 02 14

Hazards

• Structural hazards
– Resource conflict (mostly in multiple instruction issue machines;

also for resources which are used for more than one cycle see later)

• Data dependencies
– Most common RAW but also WAR and WAW in OOO execution

• Control hazards
– Branches and other flow of control disruptions

• Consequence: stalls in the pipeline
– Equivalently: insertion of bubbles or of no-ops

Review CSE 471 Autumn 02 15

Pipeline speed-up

1

depth pipeline
 = ealSpeedup_id

hazardsby dcontribute CPI + 1

depth pipeline
 = hazards_Speedup

Review CSE 471 Autumn 02 16

Example of structural hazard

• For single issue machine: common data and instruction
memory (unified cache)
– Pipeline stall every load-store instruction (control easy to

implement)

• Better solutions
– Separate I-cache and D-cache

– Instruction buffers

– Both + sophisticated instruction fetch unit!

• Will see more cases in multiple issue machines

Review CSE 471 Autumn 02 17

Data hazards

• Data dependencies between instructions that are in the pipe
at the same time.

• For single pipeline in order issue: Read After Write hazard
(RAW)

Add R1, R2, R3 #R1 is result register

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #conflict with R1

Or R6,R1,R2 #conflict with R1

Add R5, R2, R1 #R1 OK now (5 stage pipe)

Review CSE 471 Autumn 02 18

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK

IF ID EXE MEM WB

OK if in ID stage one can write
In 1st part of cycle and read in 2nd part

Review CSE 471 Autumn 02 19

Forwarding

• Result of ALU operation is known at end of EXE stage
• Forwarding between:

– EXE/MEM pipeline register to ALUinput for instructions i and i+1
– MEM/WB pipeline register to ALUinput for instructions i and i+2

• Note that if the same register has to be forwarded, forward the last
one to be written (see two slides from now)

– Forwarding through register file (write 1st half of cycle, read 2nd
half of cycle)

• Need of a “forwarding box” in the Control Unit to check
on conditions for forwarding

• Forwarding between load and store (memory copy)

Review CSE 471 Autumn 02 20

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK w/o forwarding

IF ID EXE MEM WB

Review CSE 471 Autumn 02 21

Forwarding in consecutive instructions

• What happens if we have
add $10,$10,$12

add $10,$10,$12

add $10,$10,$12

Forwarding priority is given to the most recent result, that is the one
generated by the ALU in the EX/Mem, not the one passed to
Mem/Wb (requires extra check to see whether this situation arises)

Review CSE 471 Autumn 02 22

Other data hazards

• Write After Write (WAW). Can happen in
– Pipelines with more than one write stage

– More than one functional unit with different latencies (see later)

• Write After Read (WAR). Very rare
– With VAX-like autoincrement addressing modes

Review CSE 471 Autumn 02 23

Forwarding cannot solve all conflicts

• For example, in a simple MIPS-like pipeline

Lw R1, 0(R2) #Result at end of MEM stage

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #OK with forwarding

Or R6,R1,R2 # OK with forwarding

Review CSE 471 Autumn 02 24

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

LW R1, 0(R2)
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

IF ID EXE MEM WB

OK

No way!

OK

Review CSE 471 Autumn 02 25

| | |

|

|

|

|

| |

| | | |

| | | | |

LW R1, 0(R2)
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

IF ID EXE MEM WB

|

|

| | | | | |

Insert a bubble

Review CSE 471 Autumn 02 26

Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i that
needs the result of the load, we need to stall the pipeline
for one cycle , that is
– instruction i-1 should progress normally

– instruction i should not progress

– no new instruction should be fetched

• Controlled by a “hazard detection box” within the Control
unit; it should operate during the ID stage

Review CSE 471 Autumn 02 27

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Forwarding
unit

Control unit

Stall unit

9/26/2002 Review CSE 471 Autumn 02 28

Control Hazards

• Branches (conditional, unconditional, call-return)

• Interrupts: asynchronous event (e.g., I/O)
– Occurrence of an interrupt checked at every cycle

– If an interrupt has been raised, don’t fetch next instruction, flush
the pipe, handle the interrupt (see later in the quarter)

• Exceptions (e.g., arithmetic overflow, page fault etc.)
– Program and data dependent (repeatable), hence “synchronous”

Review CSE 471 Autumn 02 29

Exceptions

• Occur “within” an instruction, for example:
– During IF: page fault

– During ID: illegal opcode

– During EX: division by 0

– During MEM: page fault; protection violation

• Handling exceptions
– A pipeline is restartable if the exception can be handled and the

program restarted w/o affecting execution

9/26/2002 Review CSE 471 Autumn 02 30

Precise exceptions

• If exception at instruction i then
– Instructions i-1, i-2 etc complete normally (flush the pipe)
– Instructions i+1, i+2 etc. already in the pipeline will be “no-oped”

and will be restarted from scratch after the exception has been
handled

• Handling precise exceptions: Basic idea
– Force a trap instruction on the next IF
– Turn off writes for all instructions i and following
– When the target of the trap instruction receives control, it saves the

PC of the instruction having the exception
– After the exception has been handled, an instruction “return from

trap” will restore the PC.

9/26/2002 Review CSE 471 Autumn 02 31

Precise exceptions (cont’d)

• Relatively simple for integer pipeline
– All current machines have precise exceptions for integer and load-

store operations

• Can lead to loss of performance for pipes with multiple
cycles execution stage (f-p see later)

9/26/2002 Review CSE 471 Autumn 02 32

Integer pipeline (RISC) precise exceptions

• Recall that exceptions can occur in all stages but WB

• Exceptions must be treated in instruction order
– Instruction i starts at time t

– Exception in MEM stage at time t + 3 (treat it first)

– Instruction i + 1 starts at time t +1

– Exception in IF stage at time t + 1 (occurs earlier but treat in 2nd)

9/26/2002 Review CSE 471 Autumn 02 33

Treating exceptions in order

• Use pipeline registers
– Status vector of possible exceptions carried on with the instruction.

– Once an exception is posted, no writing (no change of state; easy
in integer pipeline -- just prevent store in memory)

– When an instruction leaves MEM stage, check for exception.

9/26/2002 Review CSE 471 Autumn 02 34

Difficulties in less RISCy environments

• Due to instruction set (“long” instructions”)
– String instructions (but use of general registers to keep state)

– Instructions that change state before last stage (e.g., autoincrement
mode in Vax and update addressing in Power PC) and these
changes are needed to complete inst. (require ability to back up)

• Condition codes
– Must remember when last changed

• Multiple cycle stages (see later)

Review CSE 471 Autumn 02 35

Principle of Locality: Memory Hierarchies

• Text and data are not accessed randomly
• Temporal locality

– Recently accessed items will be accessed in the near future (e.g.,
code in loops, top of stack)

• Spatial locality
– Items at addresses close to the addresses of recently accessed items

will be accessed in the near future (sequential code, elements of
arrays)

• Leads to memory hierarchy at two main interface levels:
– Processor - Main memory -> Introduction of caches
– Main memory - Secondary memory -> Virtual memory (paging

systems)

Review CSE 471 Autumn 02 36

Caches (on-chip, off-chip)

• Caches consist of a set of entries where each entry has:
– block (or line) of data: information contents (initially, the image of

some main memory contents)

– tag: allows to recognize if the block is there (depends on the
mapping)

– status bits: valid, dirty, state for multiprocessors etc.

• Capacity (or size) of a cache: number of blocks *block size
i.e., the cache metadata (tag + status bits) is not counted in the cache capacity

• Notation
– First-level (on-chip) cache: L1;

– Second-level (on-chip/off-chip): L2; third level (Off-chip) L3

Review CSE 471 Autumn 02 37

Cache Organization -- Direct-mapped

• Most restricted mapping
– Direct-mapped cache. A given memory location (block) can only

be mapped in a single place in the cache. This place is (generally)
given by:

(block address) mod (number of blocks in cache)

– To make the mapping easier, the number of blocks in a direct-
mapped cache is (almost always)a power of 2.

Review CSE 471 Autumn 02 38

Direct-mapped Cache

Cache

Main memory

All addresses
mod C map to
the same cache
blockC lines

C lines

Review CSE 471 Autumn 02 39

Fully-associative Cache

• Most general mapping
– Fully-associative cache. A given memory location (block) can be

mapped anywhere in the cache.

– No cache of decent size is implemented this way but this is the
(general) mapping for pages (disk to main memory), for small
TLB’s, and for some small buffers used as cache assists (e.g.,
victim caches, write caches).

Review CSE 471 Autumn 02 40

Fully-associative Cache

Any memory
block can map to
any cache block

Cache

Main memory

Review CSE 471 Autumn 02 41

Set-associative Caches

• Less restricted mapping
– Set-associative cache. Blocks in the cache are grouped into sets

and a given memory location (block) maps into a set. Within the
set the block can be placed anywhere. Associativities of 2 (two-
way set-associative), 3, 4, 8 and even 16 have been implemented.

• Direct-mapped = 1-way set-associative

• Fully associative with m entries is m-way set associative

• Capacity
– Capacity = number of sets * set-associativity * block size

Review CSE 471 Autumn 02 42

Set-associative Cache

Cache

Main memory

A memory block maps into a
specific block of either set

Bank 0 Bank 1

Review CSE 471 Autumn 02 43

Cache Hit or Cache Miss?

• How to detect if a memory address (a byte address) has a
valid image in the cache:

• Address is decomposed into 3 fields:
– block offset or displacement (depends on block size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag

Review CSE 471 Autumn 02 44

Hit Detection

tag index displ.

Example: cache capacity C, block size b

Direct mapped: displ = log2 b; index = log2(C/ b); tag = 32 -index - displ

N -way S.A: displ = log2 b; index = log2(C/ bN); tag = 32 -index – displ
(this assumes N is a power of 2)

So what does it mean to have 3-way (N=3) set-associativity?

Review CSE 471 Autumn 02 45

Why Set-associative Caches?

• Cons
– The higher the associativity the larger the number of comparisons to be

made in parallel for high-performance (can have an impact on cycle time
for on-chip caches)

– Higher associativity requires a wider tag array (minimal impact)

• Pros
– Better hit ratio

– Great improvement from 1 to 2, less from 2 to 4, minimal after that but
can still be important for large L2 caches

– Allows parallel search of TLB and of larger (by a factor proportional to
the associativity) caches, thus potentially avoiding the great majority of
the overhead of address translation in virtual memory systems

Review CSE 471 Autumn 02 46

Replacement Algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative caches
– Not an important factor for performance for low associativity. Can

become important for large associativity and large caches

Review CSE 471 Autumn 02 47

Writing in a Cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or higher level cache) (write-
through) policy

• On a write miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)

Review CSE 471 Autumn 02 48

The Main Write Options

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory

– On a write miss, the most frequent option is write-around

– Pro: consistent view of memory (better for I/O); no ECC required
for cache

– Con: more memory traffic (can be alleviated with write buffers)

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but
variations are possible

– Pro-con reverse of write through

Review CSE 471 Autumn 02 49

Classifying the Cache Misses: The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a block. Reduced (for a given cache

capacity and associativity) by having large blocks

• Capacity misses
– The working set is too big for the ideal cache of same capacity and

block size (i.e., fully associative with optimal replacement
algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two blocks to the same location. Increasing

associativity decreases this type of misses.

• There is a fourth C: coherence misses (cf. multiprocessors)

