Levels of Parallelism within a Single
Processor

ILP: smallest grain of parallelism

— Resources are not that well utilized (far from ideal CPI)

— Stalls on operations with long latencies (cache miss, division)
Multiprogramming: Several applications (or large sections
of applications) running concurrently

— O.S. directed activity

— Change of application requires a context-switch (e.g., on a page
fault)

Multithreading

— Main goal: tolerate latency of long operations without paying the
price of a full context-switch

Multithr. CSE 471 Autumn 02 1

Multithreading

The processor supports several instructions streams
running “concurrently”
Each instruction stream has its own context (process state)
— Registers
— PC, status register, special control registers etc.
The multiple streams are multiplexed by the hardware on a
set of common functional units

Multithr. CSE 471 Autumn 02 2

Fine Grain Multithreading

Conceptually, at every cycle a new instruction stream
dispatches an instruction to the functional units
If enough instruction streams are present, long latencies
can be hidden

— For example, if 32 streams can dispatch an instruction, latencies of

32 cycles could be tolerated

For a single application, requires highly sophisticated
compiler technology

— Discover many threads in a single application
Basic idea behind Tera (now Cray) MTA

— Burton Smith third such machine (he started in late 70’s)

Multithr. CSE 471 Autumn 02 3

Tera’s MTA

Each processor can support

— 16 multiprogrammed applications

— 128 streams
At every clock cycle, processor selects a ready stream and
issues an instruction from that stream
An instruction is a “LIW”: Memory, arithmetic, control
Several instructions of the same stream can be in flight
simultaneously (ILP)

Instructions of different streams can be in flight
simultaneously (multithreading or Thread level
parallelism TLP)

Multithr. CSE 471 Autumn 02 4

Tera’s MTA (c’ed)

Since several streams belong to the same application,
synchronization is very important (will be discussed later
in the quarter)

Needs instructions — and compiler support — to allocate,
activate, and deallocate streams

Compiler support: loop level parallelism and software
pipelining

Hardware support: dynamic allocation of streams
(depending on mix of applications etc.)

Multithr. CSE 471 Autumn 02 S

Coarse Grain Multithreading

Switch threads (contexts) only at certain events
— Change thread context takes a few (10-20?) cycles
— Used when long memory latency operations, €.g., access to a
remote memory in a shared-memory multiprocessor (100’s of
cycles)
Of course, context-switches occur when there are
exceptions such as page faults
Many fewer contexts needed than in fine-grain
multithreading

Multithr. CSE 471 Autumn 02 6

Simultaneous Multithreading (SMT)

Combines the advantages of ILP and fine grain multithreading

- - E] D} - - - E] Hoz. waste still
Vertical waste [[_] [] oz. waste - - - E] present but not as

of the order of
60% of - - E] E]‘/ - - - - Zt)uezhr.l(:iert. waste
overall waste - E] E] necessarily
E] E] - - E] E] disappear
- - E] E] completely as this
- - - - - - - - figure implies

[1\

ILP SMT

Multithr. CSE 471 Autumn 02 7

SMT (a UW invention)

* Needs one context per thread
— But fewer threads needed than in fine grain multithreading

+ Can issue simultaneously from distinct threads in the same
cycle

* Can share resources
— For example: physical registers for renaming, caches, BPT etc.

» Future generation Alpha was to be based on SMT

* Intel Hyperthreading is SMT with ... 2 threads

Multithr. CSE 471 Autumn 02 8

SMT (c’ed)

» Compared with an ILP superscalar of same issue width
— Requires 5% more real estate
— More complex to design (thread scheduling, identifying threads
that raise exceptions etc.)
+ Drawback (common to all wide-issue processors):
centralized design
* Benefits

— Increases throughput of applications running concurrently (but can
also increase latency of a given application)
— Dynamic scheduling

— No partitioning of many resources (in contrast with chip
multiprocessors)

Multithr. CSE 471 Autumn 02 9

Speculative Multithreading

* A current area of research

* Several approaches

— Try and identify “critical path” of instructions within a loop and
have them run speculatively (in advance) of the main thread in
further iterations

— Span speculative threads on events such as:
* Procedure call: continue with the caller and callee concurrently
 In loops: generate a speculative thread from the loop exit
« In hard to predict branches: have threads execute both sides
* Main advantage
— Warm up caches and branch predictors.

Multithr. CSE 471 Autumn 02 10

Trace Caches

+ Filling up the instruction buffer of wide issue processors is
a challenge (even more so in SMT)

* Instead of fetching from I-cache, fetch from a trace cache

» The trace cache is a complementary (or a replacement for)
instruction cache that stores sequences of instructions
organized in dynamic program execution order

» Implemented in Intel Pentium 4 and some Sun Sparc
architecture.

* One way to do dynamic optimization of programs and to
find critical path of instructions for speculative
multithreading

Multithr. CSE 471 Autumn 02 11

