Levels of Parallelism within a Single
Processor

ILP: smallest grain of parallelism

— Resources are not that well utilized (far from ideal CPI)

— Stalls on operations with long latencies (cache miss, division)
Multiprogramming: Several applications (or large sections
of applications) running concurrently

— O.S. directed activity

— Change of application requires a context-switch (e.g., on a page
fault)

Multithreading

— Main goal: tolerate latency of long operations without paying the
price of a full context-switch
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Multithreading

The processor supports several instructions streams
running “concurrently”
Each instruction stream has its own context (process state)
— Registers
— PC, status register, special control registers etc.
The multiple streams are multiplexed by the hardware on a
set of common functional units
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Fine Grain Multithreading

Conceptually, at every cycle a new instruction stream
dispatches an instruction to the functional units
If enough instruction streams are present, long latencies
can be hidden

— For example, if 32 streams can dispatch an instruction, latencies of

32 cycles could be tolerated

For a single application, requires highly sophisticated
compiler technology

— Discover many threads in a single application
Basic idea behind Tera (now Cray) MTA

— Burton Smith third such machine (he started in late 70’s)
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Tera’s MTA

Each processor can support

— 16 multiprogrammed applications

— 128 streams
At every clock cycle, processor selects a ready stream and
issues an instruction from that stream
An instruction is a “LIW”: Memory, arithmetic, control
Several instructions of the same stream can be in flight
simultaneously (ILP)

Instructions of different streams can be in flight
simultaneously (multithreading or Thread level
parallelism TLP)
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Tera’s MTA (c’ed)

Since several streams belong to the same application,
synchronization is very important (will be discussed later
in the quarter)

Needs instructions — and compiler support — to allocate,
activate, and deallocate streams

Compiler support: loop level parallelism and software
pipelining

Hardware support: dynamic allocation of streams
(depending on mix of applications etc.)
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Coarse Grain Multithreading

Switch threads (contexts) only at certain events
— Change thread context takes a few (10-20?) cycles
— Used when long memory latency operations, €.g., access to a
remote memory in a shared-memory multiprocessor (100’s of
cycles)
Of course, context-switches occur when there are
exceptions such as page faults
Many fewer contexts needed than in fine-grain
multithreading
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Simultaneous Multithreading (SMT)

Combines the advantages of ILP and fine grain multithreading
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SMT (a UW invention)

* Needs one context per thread
— But fewer threads needed than in fine grain multithreading

+ Can issue simultaneously from distinct threads in the same
cycle

* Can share resources
— For example: physical registers for renaming, caches, BPT etc.

» Future generation Alpha was to be based on SMT

* Intel Hyperthreading is SMT with ... 2 threads
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SMT (c’ed)

» Compared with an ILP superscalar of same issue width
— Requires 5% more real estate
— More complex to design (thread scheduling, identifying threads
that raise exceptions etc.)
+ Drawback (common to all wide-issue processors):
centralized design
* Benefits

— Increases throughput of applications running concurrently (but can
also increase latency of a given application)
— Dynamic scheduling

— No partitioning of many resources (in contrast with chip
multiprocessors)
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Speculative Multithreading

* A current area of research

* Several approaches

— Try and identify “critical path” of instructions within a loop and
have them run speculatively (in advance) of the main thread in
further iterations

— Span speculative threads on events such as:
* Procedure call: continue with the caller and callee concurrently
 In loops: generate a speculative thread from the loop exit
« In hard to predict branches: have threads execute both sides
* Main advantage
— Warm up caches and branch predictors.
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Trace Caches

+ Filling up the instruction buffer of wide issue processors is
a challenge (even more so in SMT)

* Instead of fetching from I-cache, fetch from a trace cache

» The trace cache is a complementary (or a replacement for)
instruction cache that stores sequences of instructions
organized in dynamic program execution order

» Implemented in Intel Pentium 4 and some Sun Sparc
architecture.

* One way to do dynamic optimization of programs and to
find critical path of instructions for speculative
multithreading
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