
Multithr. CSE 471 Autumn 02 1

Levels of Parallelism within a Single
Processor

� ILP: smallest grain of parallelism
� Resources are not that well utilized (far from ideal CPI)
� Stalls on operations with long latencies (cache miss, division)

� Multiprogramming: Several applications (or large sections
of applications) running concurrently
� O.S. directed activity
� Change of application requires a context-switch (e.g., on a page

fault)
� Multithreading

� Main goal: tolerate latency of long operations without paying the
price of a full context-switch

Multithr. CSE 471 Autumn 02 2

Multithreading

� The processor supports several instructions streams
running �concurrently�

� Each instruction stream has its own context (process state)
� Registers
� PC, status register, special control registers etc.

� The multiple streams are multiplexed by the hardware on a
set of common functional units

Multithr. CSE 471 Autumn 02 3

Fine Grain Multithreading

� Conceptually, at every cycle a new instruction stream
dispatches an instruction to the functional units

� If enough instruction streams are present, long latencies
can be hidden
� For example, if 32 streams can dispatch an instruction, latencies of

32 cycles could be tolerated
� For a single application, requires highly sophisticated

compiler technology
� Discover many threads in a single application

� Basic idea behind Tera (now Cray) MTA
� Burton Smith third such machine (he started in late 70�s)

Multithr. CSE 471 Autumn 02 4

Tera�s MTA

� Each processor can support
� 16 multiprogrammed applications
� 128 streams

� At every clock cycle, processor selects a ready stream and
issues an instruction from that stream

� An instruction is a �LIW�: Memory, arithmetic, control
� Several instructions of the same stream can be in flight

simultaneously (ILP)
� Instructions of different streams can be in flight

simultaneously (multithreading or Thread level
parallelism TLP)

Multithr. CSE 471 Autumn 02 5

Tera�s MTA (c�ed)

� Since several streams belong to the same application,
synchronization is very important (will be discussed later
in the quarter)

� Needs instructions � and compiler support � to allocate,
activate, and deallocate streams

� Compiler support: loop level parallelism and software
pipelining

� Hardware support: dynamic allocation of streams
(depending on mix of applications etc.)

Multithr. CSE 471 Autumn 02 6

Coarse Grain Multithreading

� Switch threads (contexts) only at certain events
� Change thread context takes a few (10-20?) cycles
� Used when long memory latency operations, e.g., access to a

remote memory in a shared-memory multiprocessor (100�s of
cycles)

� Of course, context-switches occur when there are
exceptions such as page faults

� Many fewer contexts needed than in fine-grain
multithreading

Multithr. CSE 471 Autumn 02 7

Simultaneous Multithreading (SMT)

Combines the advantages of ILP and fine grain multithreading

ILP SMT

Vertical waste
of the order of
60% of
overall waste

Hoz. waste
Hoz. waste still
present but not as
much. Vert. waste
does not
necessarily
disappear
completely as this
figure implies

Multithr. CSE 471 Autumn 02 8

SMT (a UW invention)

� Needs one context per thread
� But fewer threads needed than in fine grain multithreading

� Can issue simultaneously from distinct threads in the same
cycle

� Can share resources
� For example: physical registers for renaming, caches, BPT etc.

� Future generation Alpha was to be based on SMT
� Intel Hyperthreading is SMT with � 2 threads

Multithr. CSE 471 Autumn 02 9

SMT (c�ed)

� Compared with an ILP superscalar of same issue width
� Requires 5% more real estate
� More complex to design (thread scheduling, identifying threads

that raise exceptions etc.)
� Drawback (common to all wide-issue processors):

centralized design
� Benefits

� Increases throughput of applications running concurrently (but can
also increase latency of a given application)

� Dynamic scheduling
� No partitioning of many resources (in contrast with chip

multiprocessors)

Multithr. CSE 471 Autumn 02 10

Speculative Multithreading

� A current area of research
� Several approaches

� Try and identify �critical path� of instructions within a loop and
have them run speculatively (in advance) of the main thread in
further iterations

� Span speculative threads on events such as:
� Procedure call: continue with the caller and callee concurrently
� In loops: generate a speculative thread from the loop exit
� In hard to predict branches: have threads execute both sides

� Main advantage
� Warm up caches and branch predictors.

Multithr. CSE 471 Autumn 02 11

Trace Caches

� Filling up the instruction buffer of wide issue processors is
a challenge (even more so in SMT)

� Instead of fetching from I-cache, fetch from a trace cache
� The trace cache is a complementary (or a replacement for)

instruction cache that stores sequences of instructions
organized in dynamic program execution order

� Implemented in Intel Pentium 4 and some Sun Sparc
architecture.

� One way to do dynamic optimization of programs and to
find critical path of instructions for speculative
multithreading

