
Mult. Issue CSE 471 Autumn 02 1

Multiple Issue Alternatives

• Superscalar (hardware detects conflicts)
– Statically scheduled (in order dispatch and hence execution; cf.

HP-Compaq (DEC)Alpha 21164)

– Dynamically scheduled (in order issue, out of order dispatch and
execution; cf. MIPS 10000, IBM Power PC 620, Intel Pentium II,
III, and IV), Compaq (DEC)Alpha 21264, Sun UltraSparc etc.)

• VLIW – EPIC (Explicitly Parallel Instruction Computing)
– Compiler generates “bundles “ of instructions that can be executed

concurrently (cf. Intel Itanium, lot of DSP’s)

Mult. Issue CSE 471 Autumn 02 2

Multiple Issue for Static/Dynamic Scheduling

• Issue in order
– Otherwise bookkeeping too complex (the old “data flow”

machines could issue any ready instruction in the whole program)
– Check for structural hazards; if any stall

• Dispatch for static scheduling
– Check for data dependencies; stall adequately
– Can take forwarding into account

• Dispatch for dynamic scheduling
– Dispatch out of order (reservation stations, instruction window)
– Requires possibility of dispatching concurrently dependent

instructions (otherwise little benefit over static scheduling)

Mult. Issue CSE 471 Autumn 02 3

Impact of Multiple Issue on IF

• IF: Need to fetch more than 1 instruction at a time
– Simpler if instructions are of fixed length

– In fact need to fetch as many instructions as the issue stage can
handle in one cycle

– Simpler if restricted not to overlap I-cache lines

– But with branch prediction, this is not realistic hence introduction
of (instruction) fetch buffers and trace caches

– Always attempt to keep at least as many instructions in the fetch
buffer as can be issued in the next cycle (BTB’s help for that)

– For example, have an 8 wide instruction buffer for a machine that
can issue 4 instructions per cycle

Mult. Issue CSE 471 Autumn 02 4

Stalls at the IF Stage

• Instruction cache miss

• Instruction buffer is full
– Most likely there are stalls in the stages downstream

• Branch misprediction

• Instructions are stored in several I-cache lines
– In one cycle one I-cache line can be brought into fetch buffer

– A basic block might start in the middle (or end) of an I-cache line

– Requires several cache lines to fill the buffer

– The ID (issue-dispatch) stage will stall if not enough instructions in
the fetch buffer

Mult. Issue CSE 471 Autumn 02 5

Sample of Current Micros

• Two instruction issue: Alpha 21064, Sparc 2, Pentium,
Cyrix

• Three instruction issue: Pentium II, III (but 5 uops from
IF/ID to EX; AMD has 4 uops)

• Four instruction issue: Alpha 21164, Alpha 21264, Power
PC 620, Sun UltraSparc, HP PA-8000, MIPS R10000

• Many papers written in 1995-98 predicted 16-way issue by
2000. We are still at 4!

Mult. Issue CSE 471 Autumn 02 6

The Decode Stage (simple case: dual issue
and static scheduling)

• ID = Issue + Dispatch

• Look for conflicts between the (say) 2 instructions
– If one integer op. and one f-p op., only check for structural hazard,

i.e. the two instructions need the same f-u (easy to check with
opcodes)

– Slight difficulty for integer ops that access f-p registers such as
f-p load/store/move (potential additional accesses to f-p register
file; solution: provide additional ports)

– RAW dependencies resolved as in single pipelines

– Note that the load delay (assume 1 cycle) can now delay up to 3
instructions, i.e., 3 issue slots are lost

Mult. Issue CSE 471 Autumn 02 7

Decode in Simple Multiple Issue Case

• If instructions i and i+1 are fetched together and:
– Instruction i stalls, instruction i+1 will stall

– Instruction i is dispatched but instruction i+1 stalls (e.g., because
of structural hazard = need the same f-u), instruction i+2 will not
advance to the issue stage. It will have to wait till both i and i+1
have been dispatched

Mult. Issue CSE 471 Autumn 02 8

Fet Swap Dec Iss

FP

Load-store

Integer

4 stages common to
all instructions. Once
passed the 4th stage,
no stalls .

Branch prediction
during “swap”

Check structural and
data hazards during
issue

In blue, a
subset of
the 38
bypasses
(forwarding
paths)

Alpha 21064 2-way issue

Alpha 21164 4-way issue (more pipes)

S0 S1 S2 S3

Mult. Issue CSE 471 Autumn 02 9

Alpha 21064

• IF – S0: Access I-cache
– Prefetcher fetches 2 instructions (8 bytes) at a time

• Swap stage - S1:
– Prefetcher contains branch prediction logic tested at this stage: 4

entry return stack; 1 bit/instruction in the I-cache + static
prediction BTFNT

– Initial decode yields 0, 1 or 2 instruction potential issue; align
instructions depending on the functional unit there are headed for.

• End of decode: S2.
– Check for WAW and WAR (my guess)

Mult. Issue CSE 471 Autumn 02 10

Alpha 21064 (c’ed)

• Instruction Issue: S3
– Check for RAW; forwarding etc

• Conditions for 2 instruction issue (S2 and S3)
– The first instruction must be able to issue (in order execution)

– Load/store can issue with an operate except stores cannot issue
with an operate of different format (share the same result bus)

– An integer op. can issue with a f-p op.

– A branch can issue with a load/store/operate (but not with stores of
the same format)

Mult. Issue CSE 471 Autumn 02 11

The Decode Stage (dynamic scheduling)

• Decode means:
– Dispatch to either

• A centralized instruction window common to all functional
units (Pentium Pro, Pentium III and Pentium 4)

• Reservation stations associated with functional units (MIPS
10000, AMD K5, IBM Power PC 620)

– Rename registers (if supported by architecture)
• Note the difficulty when renaming in the same cycle

R1 <- R2 + R3; R4 <- R1 + R5

– Set up entry at tail of reorder buffer (if supported by
architecture)

– Issue operands, when ready, to functional unit
Mult. Issue CSE 471 Autumn 02 12

Stalls in Decode (issue/dispatch) Stage

• There can be several instructions ready to be dispatched in
same cycle to same functional unit

• There might not be enough bus/ports to forward values to
all the reservation stations that need them in the same cycle

Mult. Issue CSE 471 Autumn 02 13

The Execute Stage

• Use of forwarding in the case of static scheduling

• Use of broadcast bus and reservation stations for dynamic
scheduling

• We’ll talk at length about memory operations (load-store)
when we study memory hierarchies

Mult. Issue CSE 471 Autumn 02 14

The Commit Step (in-order completion)

• Recall: need of a mechanism (reorder buffer) to:
– “Complete” instructions in order. This commits the instruction.

Since multiple issue machine, should be able to commit (retire)
several instructions per cycle

– Know when an instruction has completed non-speculatively,i.e.,
what to do with branches

– Know whether the result of an instruction is correct, i.e., what to
do with exceptions

Mult. Issue CSE 471 Autumn 02 15

Pentium Family (slightly more details in H&P

Sec 3.10)

• Fetch-Decode unit
– Transforms up to 3 instructions at a time into micro-operations

(uops) and stores them in a global reservation table (instruction
window). Does register renaming (RAT = register alias table)

• Dispatch (aka issue)-execution unit
– Issues uops to functional units that execute them and temporarily

store the results (the reservation table is 5-ported, hence 5 uops can
be issued concurrently)

• Retire unit
– Commits the instructions in order (up to 3 commits/cycle)

Mult. Issue CSE 471 Autumn 02 16

Fetch/Decode/
Dispath unit;
8 stages of the
pipe

Execute Unit: 5
different funct.
Units EX takes
from 1 to 32 cycles

Retire unit: 3
stages

Instruction pool

The 3 units of the Pentium P6 are “independent”
and communicate through the instruction pool

Mult. Issue CSE 471 Autumn 02 17

Impact on Branch Prediction and Completion

• When a conditional branch is decoded:
– Save the current physical-logical mapping

– Predict and proceed

• When branch is ready to commit (head of buffer)
– If prediction correct, discard the saved mapping

– If prediction incorrect
• Flush all instructions following mispredicted branch in reorder buffer

• Restore the mapping as it was before the branch as per the saved map

• Note that there have been proposals to execute both sides
of a branch using register shadows
– limited to one extra set of registers

Mult. Issue CSE 471 Autumn 02 18

Exceptions

• Instructions carry their exception status

• When instruction is ready to commit
– No exception: proceed normally

– Exception
• Flush (as in mispredicted branch)

• Restore mapping (more difficult than with branches because the
mapping is not saved at every instruction; this method can also be
used for branches)

Mult. Issue CSE 471 Autumn 02 19

Limits to Hardware-based ILP

• Inherent lack of parallelism in programs
– Partial remedy: loop unrolling and other compiler optimizations

– Branch prediction to allow earlier issue and dispatch

• Complexity in hardware
– Needs large bandwidth for instruction fetch (might need to fetch

from more than one I-cache line in one cycle)

– Requires large register bandwidth (multiported register files)

– Forwarding/broadcast requires “long wires” (long wires are slow)
as soon as there are many units.

Mult. Issue CSE 471 Autumn 02 20

Limits to Hardware-based ILP (c’ed)

• Difficulties specific to the implementation
– More possibilities of structural hazards (need to encode some

priorities in case of conflict in resource allocations)

– Parallel search in reservation stations, reorder buffer etc.

– Additional state savings for branches (mappings), more complex
updating of BPT’s and BTB’s.

– Keeping precise exceptions is more complex

