Main Memory

- The last level in the cache – main memory hierarchy is the main memory made of DRAM chips
- DRAM parameters (memory latency at the DRAM level):
 - Access time: time between the read is requested and the desired word arrives
 - Cycle time: minimum time between requests to memory (cycle time > access time; see next slide)

DRAM’s

- Address lines split into row and column addresses. A read operation consists of:
 - RAS (Row access strobe)
 - CAS (Column access strobe)
 - If device has been precharged, access time = RAS + CAS
 - If not, have to add precharge time
- In DRAM, data needs to be written back after a read, hence cycle time > access time
 - For example, cycle time 80 ns, access time 40 ns, CAS only 5 ns

<table>
<thead>
<tr>
<th>DRAM vs. SRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle time of SRAM 10 to 20 times faster than DRAM</td>
</tr>
<tr>
<td>For same technology, capacity of DRAM 5 to 10 times that of SRAM</td>
</tr>
<tr>
<td>Hence</td>
</tr>
</tbody>
</table>
 - Main memory is DRAM
 - On-chip caches are SRAM
 - Off-chip caches (it depends)
| DRAM growth |
 - Capacity: Factor of 4 every 3 years (60% per year; slightly slowing down)
 - Cycle time. Improvement of 20% per generation (7% per year)

How to Improve Main Memory Bandwidth

- It’s easier to improve on bandwidth than on latency
- Sending address: can’t be improved (and this is latency)
 - Although split-transaction bus allows some overlap
- Make memory wider (assume monolithic memory)
 - Sending one address, yields transfer of more than one word if the bus width allows it (and it does nowadays)
 - But less modularity (buy bigger increments of memory)
Interleaving (introducing parallelism at the DRAM level)

- Memory is organized in banks
- Bank \(i \) stores all words at address \(j \mod i \)
- All banks can read a word in parallel
 - Ideally, number of banks should match (or be a multiple of) the L2 block size (in words)
- Bus does not need to be wider (buffer in the DRAM bank)
- Writes to individual banks for different addresses can proceed without waiting for the preceding write to finish (great for write-through caches)

Banks of Banks

- Superbanks interleaved by some bits other than lower bits
- Superbanks composed of banks interleaved on low order bits for sequential access
- Superbanks allow parallel access to memory
 - Great for lock-up free caches, for concurrent I/O and for multiprocessors sharing main memory

Limitations of Interleaving (sequential access)

- Number of banks limited by increasing chip capacity
 - With 1M x 1 bit chips, it takes 64 x 8 = 512 chips to get 64 MB (easy to put 16 banks of 32 chips)
 - With 16 M x 1 chips, it takes only 32 chips (only one bank)
 - More parallelism in using 4M x 4 chips (32 chips in 4 banks)
- In the \(N \times m \) (\(N \) number of MB, \(m \) width of bits out of each chip) \(m \) is limited by electronic constraints to about 8 or maybe 16.

Example Memory Path of a Workstation

Page-mode, Synchronous DRAMs and DDRs

- Introduce a page buffer
 - In page mode if the access hits, no need for a RAS
 - But if a miss, need to precharge + RAS + CAS
- In SDRAM, same as page-mode but subsequent accesses even faster (burst mode)
 - “S” stands for synchronous, i.e., the interface between the DRAM and the memory controller is clocked.
- DDR (double data rate) memory allow data transfer at rising edge and falling edge of the clock, thus doubling peak rate.

Cached DRAM and Processor in Memory

- Put some SRAM on DRAM chip
 - More flexibility in buffer size than page mode
 - Can precharge DRAM while accessing SRAM
 - But fabrication is different hence has not caught up in mass market
- Go one step further (1 billion transistors/chip)
 - Put “simple” processor and SRAM and DRAM on chip
 - Great bandwidth for processor-memory interface
 - Cache with very large block size since parallel access to many banks is possible
 - Can’t have too complex of a processor
 - Need to invest in new fabs
Processor in Memory (PIM)

- Generality depends on the intended applications
- IRAM
 - Vector processor; data stream apps; low power
- FlexRAM
 - Memory chip = Host + Simple multiprocessor + banks of DRAM; memory intensive apps.
- Active Pages
 - Co-processor paradigm; reconfigurable logic in memory
- FBGRAM
 - Graphics in memory

Rambus

- Specialized memory controller (scheduler), channel, and RDRAM’s (now Direct RDRAM, i.e., DRDRAM)
- Parallelism and pipelining, e.g.
 - Independent row, column, and data buses (narrow -- 2 bytes)
 - Pipelined memory subsystem (several packets/access; packets are 4 cycles = 10 ns)
 - Parallelism within the RDRAMs (many banks with 4 possible concurrent operations)
 - Parallelism among RDRAM’s (large number of them)
- Great for “streams of data” (Graphics, games)

Direct Rambus

- Extremely fast bus (400 MHz clock, 800 MHz transfer rate)
- Great bandwidth for stream data but still high latency for random read/writes

Split-transaction Bus

- Allows transactions (address, control, data) for different requests to occur simultaneously
- Required for efficient Rambus
- Great for SMP’s sharing a single bus