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How to improve (decrease) CPI

• Recall:  CPI = Ideal CPI + CPI contributed by stalls

• Ideal CPI =1 for single issue machine even with multiple 
execution units

• Ideal CPI will be less than 1 if we have several execution 
units and we can issue (and “commit”) multiple 
instructions in the same cycle, i.e.,  we take advantage of 
Instruction Level Parallelism (ILP)
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Extending simple pipeline to multiple pipes

• Single issue: in ID stage direct to one of several EX stages

• Common WB stage

• EX of various pipelines might take more than one cycle

• Latency of an EX unit = Number of cycles before its result 
can be forwarded = Number of stages –1

• Not all EX need be pipelined

• IF EX is pipelined
– A new instruction can be assigned to it every cycle (if no data

dependency) or, maybe only after x cycles, with x depending on 
the function to be performed
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IF ID

EX (e.g., integer; latency 0)

M1 M7

A1 A4

Div (e.g., not pipelined,
Latency 25)

Me

Needed  at beg of cycle 
& ready at end of cycle

both

WB

F-p add (latency 3)

F-p mul (latency 6)
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Hazards in example multiple cycle pipeline

• Structural: Yes
– Divide unit is not pipelined. In the example processor two Divides 

separated by less than 25 cycles will stall the pipe
– Several writes might be “ready” at the same time and want to use

WB stage at the same time (not possible if single write port)

• RAW: Yes
– Essentially handled as in integer pipe (the dependent instruction is 

stalled at the beginning of its EX stage) but with higher frequency 
of stalls. Also more forwarding paths are needed.

• WAW : Yes (see later) 
– WAR no since read is in the ID stage

• Out of order completion : Yes (see later)
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RAW:Example from the book (pg A-51)

F4 <- M           IF ID EX MeWB
F0 <- F4 * F6       IF  ID  st M1 M2  M3  M4  M5  M6  M7 Me WB
F2 <- F0 + F8             IF  st ID   st     st     st      st    st st A1 A2   A3  A4 Me WB
M <- F2                               IF st     st     st      st    st st ID    EX  st    st     st   Me WB

In blue data dependencies hazard

In red structural hazard 

In green stall cycles

Note both the data dependency and structural 
hazard for the 4th instruction
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Conflict in using the WB stage

• Several instructions might want to use the WB stage at the 
same time
– E.g.,A  Multd issued at time t and an addd issued at time t + 3

• Solution 1: reserve the WB stage at ID stage (scheme 
already used in CRAY-1 built in 1976)
– Keep track of WB stage usage in shift register
– Reserve the right slot. If busy, stall for a cycle and repeat
– Shift every clock cycle

• Solution 2: Stall before entering either Me or WB
– Pro: easier detection than solution 1
– Con: need to be able to trickle the stalls “backwards”.



Intro to exploiting ILP CSE 471 Autumn 02 7

Example on how to reserve the WB stage
(Solution 1 in previous slide)

Time in ID stage                   Operation Shift register            

t                                    multd                                       000 000 001

t +1                                int                                           001 000 010

t + 2                               int                                           011 000 100

t  + 3                              addd                                        110 00X 000 

Note: multd and addd want WB at time t + 9. addd will be asked to stall one 
cycle

Instructions complete out of order (e.g., the two int terminate before the multd)
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WAW Hazards

• Instruction i writes f-p register Fx at time t
Instruction i + k writes f-p register Fx at time t - m

• But no instruction i + 1, i +2, i+k uses (reads) Fx
(otherwise there would be a stall)

• Only requirement is that i + k ´s result be stored 
– Note: this situation should be rare (useless instruction i)

• Solutions:
– Squash i : difficult to know where it is in the pipe
– At ID stage check that result register is not a result register in all

subsequent stages of other units. If it is, stall appropriate number of 
cycles.
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Out-of-order completion

• Instruction i finishes at time t

Instruction i + k finishes at time t - m
– No hazard etc. (see previous example on integer completing before 

multd )

• What happens if instruction i causes an exception at a time

in [t-m,t] and instruction i + k  writes in one of its own 
source operands (i.e., is not restartable)?
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Exception handling

• Solutions (cf. book pp A-54 – A-56 for more details)
– Do nothing (imprecise exceptions; bad with virtual memory)
– Have a precise (by use of testing instructions) and an imprecise

mode; effectively restricts concurrency of f-p operations
– Buffer results in a “history file” (or a “future file”) until previous 

(in order) instructions have completed; can be costly when there
are large differences in latencies but a similar technique is used for 
OOO execution . 

– Restrict concurrency of f-p operations and on an exception 
“simulate in software” the instructions in between the faulting and 
the finished one.

– Flag early those operations that might result in an exception and 
stall accordingly
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Resources for Exploiting ILP (ct’d)

• IF and ID: Allow several instructions to be fetched, 
decoded, and issued (sent to the execution units) in the 
same cycle.

• Superscalar machines are those that have multiple 
instruction issues. We will distinguish later on between 
those that require instructions to be issued in program 
order and those that allow out-of-order issues.

• Note that these extensions might result in out-of-order
completion of instructions. Mechanisms will be introduced 
in the WB stage to enforce in-order completion (commit).

Intro to exploiting ILP CSE 471 Autumn 02 12

Exploitation of Instruction Level Parallelism 
(ILP)

• Will increase throughput and decrease CPU execution time

• Will increase structural hazards
– Cannot issue simultaneously 2 instructions to the same pipe

• Makes reduction in other stalls even more important
– A stall costs more than the loss of a single instruction issue

• Will make the design more complex
– WAW and WAR hazards can occur

– Out-of-order completion can occur

– Precise exception handling is more difficult
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Where can we optimize? (control)

• CPI contributed by control stalls can be decreased 
statically (compiler) or dynamically (hardware)

• Speculative execution
– Branch prediction (we have seen that already)

– Bypassing Loads (memory reference speculation)

– Predication
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Where can we optimize? (data dependencies)

• Hardware (run-time) techniques
– Forwarding (RAW; we have seen that)

– Register renaming (WAW, WAR)
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Data dependencies (RAW)

• Instruction (statement) Sj dependent on Si if

– Transitivity: Instruction j dependent on k and k dependent on i

• Dependence is a program property

• Hazards (RAW in this case) and their (partial) removals 
are a pipeline organization property

• Code scheduling goal
– Maintain dependence and avoid hazard (pipeline is exposed to the 

compiler)

O Ii j∩ ≠ ∅
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Name dependence

• Anti dependence
– Si: …<- R1+ R2; ….; Sj: R1 <- …
– At the instruction level, this is WAR hazard if instruction j finishes 

first

• Output dependence
– Si: R1 <- …; ….; Sj: R1 <- …
– At the instruction level, this is a WAW hazard if instruction j

finishes first

• In both cases, not really a dependence but a “naming” 
problem
– Register renaming (compiler by register allocation, in hardware see 

later)

O Ij i∩ ≠ ∅

O Oi j∩ ≠ ∅


