
Intro to exploiting ILP CSE 471 Autumn 02 1

How to improve (decrease) CPI

• Recall: CPI = Ideal CPI + CPI contributed by stalls

• Ideal CPI =1 for single issue machine even with multiple
execution units

• Ideal CPI will be less than 1 if we have several execution
units and we can issue (and “commit”) multiple
instructions in the same cycle, i.e., we take advantage of
Instruction Level Parallelism (ILP)

Intro to exploiting ILP CSE 471 Autumn 02 2

Extending simple pipeline to multiple pipes

• Single issue: in ID stage direct to one of several EX stages

• Common WB stage

• EX of various pipelines might take more than one cycle

• Latency of an EX unit = Number of cycles before its result
can be forwarded = Number of stages –1

• Not all EX need be pipelined

• IF EX is pipelined
– A new instruction can be assigned to it every cycle (if no data

dependency) or, maybe only after x cycles, with x depending on
the function to be performed

Intro to exploiting ILP CSE 471 Autumn 02 3

IF ID

EX (e.g., integer; latency 0)

M1 M7

A1 A4

Div (e.g., not pipelined,
Latency 25)

Me

Needed at beg of cycle
& ready at end of cycle

both

WB

F-p add (latency 3)

F-p mul (latency 6)

Intro to exploiting ILP CSE 471 Autumn 02 4

Hazards in example multiple cycle pipeline

• Structural: Yes
– Divide unit is not pipelined. In the example processor two Divides

separated by less than 25 cycles will stall the pipe
– Several writes might be “ready” at the same time and want to use

WB stage at the same time (not possible if single write port)

• RAW: Yes
– Essentially handled as in integer pipe (the dependent instruction is

stalled at the beginning of its EX stage) but with higher frequency
of stalls. Also more forwarding paths are needed.

• WAW : Yes (see later)
– WAR no since read is in the ID stage

• Out of order completion : Yes (see later)

Intro to exploiting ILP CSE 471 Autumn 02 5

RAW:Example from the book (pg A-51)

F4 <- M IF ID EX MeWB
F0 <- F4 * F6 IF ID st M1 M2 M3 M4 M5 M6 M7 Me WB
F2 <- F0 + F8 IF st ID st st st st st st A1 A2 A3 A4 Me WB
M <- F2 IF st st st st st st ID EX st st st Me WB

In blue data dependencies hazard

In red structural hazard

In green stall cycles

Note both the data dependency and structural
hazard for the 4th instruction

Intro to exploiting ILP CSE 471 Autumn 02 6

Conflict in using the WB stage

• Several instructions might want to use the WB stage at the
same time
– E.g.,A Multd issued at time t and an addd issued at time t + 3

• Solution 1: reserve the WB stage at ID stage (scheme
already used in CRAY-1 built in 1976)
– Keep track of WB stage usage in shift register
– Reserve the right slot. If busy, stall for a cycle and repeat
– Shift every clock cycle

• Solution 2: Stall before entering either Me or WB
– Pro: easier detection than solution 1
– Con: need to be able to trickle the stalls “backwards”.

Intro to exploiting ILP CSE 471 Autumn 02 7

Example on how to reserve the WB stage
(Solution 1 in previous slide)

Time in ID stage Operation Shift register

t multd 000 000 001

t +1 int 001 000 010

t + 2 int 011 000 100

t + 3 addd 110 00X 000

Note: multd and addd want WB at time t + 9. addd will be asked to stall one
cycle

Instructions complete out of order (e.g., the two int terminate before the multd)

Intro to exploiting ILP CSE 471 Autumn 02 8

WAW Hazards

• Instruction i writes f-p register Fx at time t
Instruction i + k writes f-p register Fx at time t - m

• But no instruction i + 1, i +2, i+k uses (reads) Fx
(otherwise there would be a stall)

• Only requirement is that i + k ´s result be stored
– Note: this situation should be rare (useless instruction i)

• Solutions:
– Squash i : difficult to know where it is in the pipe
– At ID stage check that result register is not a result register in all

subsequent stages of other units. If it is, stall appropriate number of
cycles.

Intro to exploiting ILP CSE 471 Autumn 02 9

Out-of-order completion

• Instruction i finishes at time t

Instruction i + k finishes at time t - m
– No hazard etc. (see previous example on integer completing before

multd)

• What happens if instruction i causes an exception at a time

in [t-m,t] and instruction i + k writes in one of its own
source operands (i.e., is not restartable)?

Intro to exploiting ILP CSE 471 Autumn 02 10

Exception handling

• Solutions (cf. book pp A-54 – A-56 for more details)
– Do nothing (imprecise exceptions; bad with virtual memory)
– Have a precise (by use of testing instructions) and an imprecise

mode; effectively restricts concurrency of f-p operations
– Buffer results in a “history file” (or a “future file”) until previous

(in order) instructions have completed; can be costly when there
are large differences in latencies but a similar technique is used for
OOO execution .

– Restrict concurrency of f-p operations and on an exception
“simulate in software” the instructions in between the faulting and
the finished one.

– Flag early those operations that might result in an exception and
stall accordingly

Intro to exploiting ILP CSE 471 Autumn 02 11

Resources for Exploiting ILP (ct’d)

• IF and ID: Allow several instructions to be fetched,
decoded, and issued (sent to the execution units) in the
same cycle.

• Superscalar machines are those that have multiple
instruction issues. We will distinguish later on between
those that require instructions to be issued in program
order and those that allow out-of-order issues.

• Note that these extensions might result in out-of-order
completion of instructions. Mechanisms will be introduced
in the WB stage to enforce in-order completion (commit).

Intro to exploiting ILP CSE 471 Autumn 02 12

Exploitation of Instruction Level Parallelism
(ILP)

• Will increase throughput and decrease CPU execution time

• Will increase structural hazards
– Cannot issue simultaneously 2 instructions to the same pipe

• Makes reduction in other stalls even more important
– A stall costs more than the loss of a single instruction issue

• Will make the design more complex
– WAW and WAR hazards can occur

– Out-of-order completion can occur

– Precise exception handling is more difficult

Intro to exploiting ILP CSE 471 Autumn 02 13

Where can we optimize? (control)

• CPI contributed by control stalls can be decreased
statically (compiler) or dynamically (hardware)

• Speculative execution
– Branch prediction (we have seen that already)

– Bypassing Loads (memory reference speculation)

– Predication

Intro to exploiting ILP CSE 471 Autumn 02 14

Where can we optimize? (data dependencies)

• Hardware (run-time) techniques
– Forwarding (RAW; we have seen that)

– Register renaming (WAW, WAR)

Intro to exploiting ILP CSE 471 Autumn 02 15

Data dependencies (RAW)

• Instruction (statement) Sj dependent on Si if

– Transitivity: Instruction j dependent on k and k dependent on i

• Dependence is a program property

• Hazards (RAW in this case) and their (partial) removals
are a pipeline organization property

• Code scheduling goal
– Maintain dependence and avoid hazard (pipeline is exposed to the

compiler)

O Ii j∩ ≠ ∅

Intro to exploiting ILP CSE 471 Autumn 02 16

Name dependence

• Anti dependence
– Si: …<- R1+ R2; ….; Sj: R1 <- …
– At the instruction level, this is WAR hazard if instruction j finishes

first

• Output dependence
– Si: R1 <- …; ….; Sj: R1 <- …
– At the instruction level, this is a WAW hazard if instruction j

finishes first

• In both cases, not really a dependence but a “naming”
problem
– Register renaming (compiler by register allocation, in hardware see

later)

O Ij i∩ ≠ ∅

O Oi j∩ ≠ ∅

