
Dyn. Sched. CSE 471 Autumn 02 1

Static vs. dynamic scheduling

• Assumptions (for now):
– 1 instruction issue / cycle
– Several pipelines with a common IF and ID

• Ideal CPI still 1, but real CPI won’t be 1 but will be closer to 1 than
before

• Same techniques will be used when we look at multiple issue

• Static scheduling (optimized by compiler)
– When there is a stall (hazard) no further issue of instructions
– Of course, the stall has to be enforced by the hardware

• Dynamic scheduling (enforced by hardware)
– Instructions following the one that stalls can issue if they do not

produce structural hazards or dependencies

Dyn. Sched. CSE 471 Autumn 02 2

Dynamic scheduling

• Implies possibility of:
– Out of order issue (we say that an instruction is issued once it has

passed the ID stage) and hence out of order execution

– Out of order completion (also possible in static scheduling but less
frequent)

– Imprecise exceptions (will take care of it later)

• Example (different pipes for add/sub and divide)
R1 = R2/ R3 (long latency)

R2 = R1 + R5 (stall, no issue, because of RAW on R1)

R6 = R7 - R8 (can be issued, executed and completed before
the other 2)

Dyn. Sched. CSE 471 Autumn 02 3

Issue and Dispatch

• Split the ID stage into:
– Issue : decode instructions; check for structural hazards and maybe

more hazards such as WAW depending on implementations. Stall
if there are any. Instructions pass in this stage in order

– Dispatch: wait until no data hazards then read operands. At the
next cycle a functional unit, i.e. EX of a pipe, can start executing

• Example revisited.
R1 = R2/ R3 (long latency; in execution)

R2 = R1 + R5 (issue but no dispatch because of RAW on R1)

R6 = R7 - R8 (can be issued, dispatched, executed and
completed before the other 2)

Dyn. Sched. CSE 471 Autumn 02 4

Implementations of dynamic scheduling

• In order to compute correct results, need to keep track of :
– execution unit (free or busy)

– register usage for read and write

– completion etc.

• Two major techniques
– Scoreboard (invented by Seymour Cray for the CDC 6600 in 1964)

– Tomasulo’s algorithm (used in the IBM 360/91 in 1967)

Dyn. Sched. CSE 471 Autumn 02 5

Scoreboarding -- The example machine
(cf. Figure A-70 in your book)Registers

Data buses

Functional units

(pipes)

scoreboard
Control lines
/status

Dyn. Sched. CSE 471 Autumn 02 6

Scoreboard basic idea

• The scoreboard keeps a record of all data dependencies
– Keeps track of which registers are used as sources and destinations

and which functional units use them

• The scoreboard keeps a record of all pipe occupancies
– The original CDC 6600 was not pipelined but conceptually the

scoreboard does not depend on pipelining

• The scoreboard decides if an instruction can be issued
– Either the first time it sees it (no hazard) or, if not, at every cycle

thereafter

• The scoreboard decides if an instruction can store its result
– This is to prevent WAR hazards

Dyn. Sched. CSE 471 Autumn 02 7

An instruction goes through 5 steps

• We assume that the instruction has been successfully
fetched (no I-cache miss)

• 1. Issue
– The execution unit for that instruction type must be free (no

structural hazard)

– There should be no WAW hazard

– If either of these conditions is false the instruction stalls. No
further issue is allowed

• There can be more fetches if there is an instruction fetch buffer (like
there was in the CDC 6660)

Dyn. Sched. CSE 471 Autumn 02 8

Execution steps under scoreboard control

• 2. Dispatch (Read operands)
– When the instruction is issued, the execution unit is reserved

(becomes busy)

– Operands are read in the execution unit when they are both ready
(i.e., are not results of still executing instructions). This prevents
RAW hazards (this conservative approach was taken because the
CDC 6600 was not pipelined)

• 3. Execution
– One or more cycles depending on functional unit latency

– When execution completes, the unit notifies the scoreboard it’s
ready to write the result

Dyn. Sched. CSE 471 Autumn 02 9

Execution steps under scoreboard control
(c’ed)

• 4. Write result
– Before writing, check for WAR hazards. If one exists, the unit is

stalled until all WAR hazards are cleared (note that an instruction
in progress, i.e., whose operands have been read, won’t cause a
WAR)

• 5. Delay (you can forget about this one)
– Because forwarding is not implemented, there should be one unit

of delay between writing and reading the same register (this
restriction seems artificial to me and is “historical”).

– Similarly, it takes one unit of time between the release of a unit
and its possible next occupancy

Dyn. Sched. CSE 471 Autumn 02 10

Optimizations and Simplifications

• There are opportunities for optimization such as:
– Forwarding

– Buffering for one copy of source operands in execution units (this
allows reading of operands one at a time and minimizing the WAR
hazards)

• We have assumed that there could be concurrent updates to
(different) registers.
– Can be solved (dynamically) by grouping execution units together

and preventing concurrent writes in the same group or by having
multiple write ports in the register file (expensive but common
nowadays)

Dyn. Sched. CSE 471 Autumn 02 11

What is needed in the scoreboard
(slightly redundant info)

• Status of each functional unit
– Free or busy
– Operation to be performed
– The names of the result Fi and source Fj, Fk registers
– Flags Rj, Rk indicating whether the source registers are ready
– Names Qj,Qk of the units (if any) producing values for Fj, Fk

• Status of result registers
– For each Fi the name of the unit (if any), say Pi that will produce

its contents (redundant but easy to check)

• The instruction status
– Been issued, dispatched, in execution, ready to write, finished?

Dyn. Sched. CSE 471 Autumn 02 12

Condition checking and scoreboard setting

• Issue step
– Unit free, say Ua and no

WAW

• Dispatch (Read operand)step
– Rj and Rk must be yes (results

ready)

• Execution step
– At end ask for writing

permission (no WAR)

• Write result
– Check if Pi is an Fj, Fk(Rj ,

Rk= no) in preceding instrs. If
yes stall.

• Issue step
– Ua busy and record Fi,Fj,Fk

– Record Qj, Qk and Rj,Rk

– Record Pi = Ua

• Dispatch (Read operand) step

• Execution step

• Write result
– For subsequent instrs, if

Qj(Qk) = Ua, set Rj(Rk) to yes

– Ua free and Pi = 0

Dyn. Sched. CSE 471 Autumn 02 13

Example

Load F6, 34(r2) Load f-p register F6

Load F2, 45(r3) Load latency 1 cycle

MulF F0,F2,F4 Mult latency 10 cycles

Sub F8, F6,F2 Add/sub latency 2 cycles

DivF F10,F0,F6 Divide latency 40 cycles

Add F6,F8,F2

Assume that the 2 Loads have been issued, the first one completed, the
second ready to write. The next 3 instructions have been issued (but
not dispatched).

RAW

WAR

Dyn. Sched. CSE 471 Autumn 02 14

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes

Sub F8, F6, F2 yes

Div F10, F0, F6 yes

Add F6,F8,F2
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int yes F2 r3

2 Mul yes F0 F2 F4 1 No Y

4 Add yes F8 F6 F2 1 Y No
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

F0 (2) F2 (1) F4 () F6() F8 (4) F10 (5) F12 ...

Dyn. Sched. CSE 471 Autumn 02 15

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes

Div F10, F0, F6 yes

Add F6,F8,F2
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul yes F0 F2 F4 Y Y

4 Add yes F8 F6 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

F0 (2) F2 () F4 () F6() F8 (4) F10 (5) F12 ...

1 cycle after 2nd load has
written its result

Dyn. Sched. CSE 471 Autumn 02 16

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes in progress

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul yes F0 F2 F4 Y Y

4 Add yes F6 F8 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

F0 (2) F2 () F4 () F6(4) F8 () F10 (5) F12 ...

6 cycles later; Mul in
execution; Sub has
completed;Div issues; Add
waits for writing

Dyn. Sched. CSE 471 Autumn 02 17

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes yes yes

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul no

4 Add yes F6 F8 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 Y Y

Register result status

F0 () F2 () F4 () F6(4) F8 () F10 (5) F12 ...

4 cycles later (I think!)
Mul is finished; Div can
dispatch; Add will write at
next cycle

Dyn. Sched. CSE 471 Autumn 02 18

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes yes yes

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul no

4 Add no
3 Mul no

5 Div yes F10 F0 F6 Y Y

Register result status

F0 () F2 () F4 () F6() F8 () F10 (5) F12 ...

1 cycle later. Only Div is
not finished

