
Cache Perf. CSE 471 Autumn 02 1

Tolerating/hiding Memory Latency

• One particular technique: prefetching

• Goal: bring data in cache just in time for its use
– Not too early otherwise cache pollution

– Not too late otherwise “hit-wait”cycles

• Under the constraints of (among others)
– Imprecise knowledge of instruction stream

– Imprecise knowledge of data stream

• Hardware/software prefetching
– Works well for regular stride data access

– Difficult when there are pointer-based accesses



Cache Perf. CSE 471 Autumn 02 2

Why, What, When, Where

• Why?
– cf. goals: Hide memory latency and/or reduce cache misses

• What
– Ideally a semantic object 

– Practically a cache block, or a sequence of cache blocks

• When
– Ideally, just in time. 

– Practically, depends on the prefetching technique

• Where
– In the cache or in  a prefetch buffer



Cache Perf. CSE 471 Autumn 02 3

Hardware Prefetching

• Nextline prefetching for instructions 
– Bring missing block and the next one (if not already there)

• OBL “one block look-ahead” for data prefetching
– As Nextline but with more variations -- e.g. depends on whether 

prefetching was successful the previous time

• Use of special assists: 
– Stream buffers,  i.e., FIFO queues to fetch consecutive lines (good 

for instructions not that good for data);

– Stream buffers with hardware stride detection mechanisms; 

– Use of a reference prediction table etc.



Cache Perf. CSE 471 Autumn 02 4

Software Prefetching

• Use of special instructions (cache hints: touch in Power 
PC, load in register 31 for Alpha, prefetch in recent 
micros)

• Non-binding prefetch (in contrast with proposals to
prefetch in registers). 
– If an exception occurs, the prefetch is ignored.

• Must be inserted by software (compiler analysis)

• Advantage: no special hardware

• Drawback: more instructions executed.



Cache Perf. CSE 471 Autumn 02 5

Metrics for Prefetching

• Coverage:  Prefetch hits/ misses without prefetching

• Accuracy: useful prefetches/ number of prefetches

• Timeliness: Related to number of hit-wait prefetches

• In addition, the usefulness of prefetching is related to how 
critical the prefetched data was



Cache Perf. CSE 471 Autumn 02 6

Techniques to Reduce Cache Miss Penalty

• Give  priority to reads  -> Write buffers

• Send the requested word first -> critical word or wrap
around strategy

• Sectored (subblock) caches

• Lock-up free (non-blocking) caches

• Cache hierarchy



Cache Perf. CSE 471 Autumn 02 7

Write Policies

• Loads (reads) occur twice as often as stores (writes)

• Miss ratio of reads and miss ratio of writes pretty much the 
same

• Although it is more important to optimize read 
performance, write performance should not be neglected

• Write misses can be delayed w/o impeding the progress of 
execution of subsequent instructions



Cache Perf. CSE 471 Autumn 02 8

A Sample of Write Mechanisms

• Fetch-on-write and Write-allocate
– Proceed like on a read miss followed by a write hit: preferred 

method for write-back caches.

• No-fetch-on-write and no-write-allocate (“write-around”)
– The cache is not modified on write misses: preferred method for 

write-through caches

• No-fetch-on-write and write-allocate (“write-validate”)
– Write directly in cache and invalidate all other parts of the line 

being written. Requires a valid bit/writeable entity. Good for 
initializing a data structure. Assumedly the best policy for 
elimination of write misses in write-through caches but more 
expensive (dirty bits)



Cache Perf. CSE 471 Autumn 02 9

Write Mechanisms (c’ed)

• write-before-hit, no-fetch-on-write and no-write-allocate 
(“write invalidate”)
– The data is written in the cache totally in parallel with checking of 

the tag. On a miss, the rest of the line is invalidated as in the write-
validate case

– Possible only for direct-mapped write-through caches

• A mix of these policies can be (and has been) implemented
– Dictate the policy on a page per page basis (bits set in the page 

table entry)
– Have the compiler generate instructions (hints) for dynamic 

changes in policies (e.g. write validate on initialization of a data 
structure)



Cache Perf. CSE 471 Autumn 02 10

Write Buffers

• Reads are more important than:
– Writes to memory if WT cache

– Replacement of dirty lines if WB

• Hence buffer the writes in write buffers
– Write buffers = FIFO queues to store data

– Since writes have a tendency to come in bunches (e.g., on 
procedure calls, context-switches etc), write buffers must be 
“deep”



Cache Perf. CSE 471 Autumn 02 11

Write Buffers (c’ed)

• Writes from write buffer to next level of the memory 
hierarchy can proceed in parallel with computation

• Now loads must check the contents of the write buffer; 
also more complex for cache coherency in multiprocessors
– Allow read misses to bypass the writes in the write buffer 



Cache Perf. CSE 471 Autumn 02 12

Coalescing Write Buffers and Write Caches

• Coalescing write buffers
– Writes to an address (block) already in the write buffer are 

combined
• Note the tension between writing the coalescing buffer to memory at 

high rate  -- more writes -- vs. coalescing to the max -- but buffer 
might become full

• Extend write buffers to small fully associative write caches
with WB strategy and dirty bit/byte. 
– Not implemented in any machine I know of



Cache Perf. CSE 471 Autumn 02 13

Critical Word First

• Send first, from next level in memory hierarchy, the word 
for which there was a miss

• Send that word directly to CPU register (or IF buffer if it’s 
an I-cache miss) as soon as it arrives

• Need a one block buffer to hold the incoming block (and 
shift it) before storing it in the cache



Cache Perf. CSE 471 Autumn 02 14

Sectored (or subblock) Caches

• First cache ever (IBM 360/85 in late 60’s) was a sector 
cache
– On a cache miss, send only a subblock, change the tag and 

invalidate all other subblocks
– Saves on memory bandwidth

• Reduces number of tags but requires good spatial locality 
in application

• Requires status bits (valid, dirty) per subblock 
• Might reduce false-sharing in multiprocessors

– But requires metadata status bits for each subblock
– Alpha 21164 L2 uses a dirty bit/16 B for a 64B block size 



Cache Perf. CSE 471 Autumn 02 15

Sector Cache

tag subblock1 subblockn

Status 
bits

data



Cache Perf. CSE 471 Autumn 02 16

Lock-up Free Caches

• Proposed in early 1980’s but implemented only within the 
last 10 years because quite complex

• Allow cache to have several outstanding miss requests (hit
under miss).
– Cache miss “happens” during EX stage, i.e., longer (unpredictable) 

latency
– Important not to slow down operations that don’t depend on results 

of the load 

• Single hit under miss (HP PA 1700) relatively simple
• For several outstanding misses, require the use of MSHR’s

(Miss Status Holding Register). 



Cache Perf. CSE 471 Autumn 02 17

MSHR’s

• The outstanding misses do not necessarily come back in 
the order they were detected 
– For example, miss 1 can percolate from L1 to main memory while 

miss 2 can be resolved at the L2 level

• Each MSHR must hold information about the particular 
miss it will handle such as:
– Info. relative to its placement in the cache

– Info. relative to the “missing” item (word, byte) and where to 
forward it  (CPU register)



Cache Perf. CSE 471 Autumn 02 18

Implementation of MSHR’s

• Quite a variety of alternatives 
– MIPS 10000, Alpha 21164,  Pentium Pro, III and IV

• One particular way of doing it:
– Valid (busy) bit (limited number of MSHR’s – structural hazard)

– Address of the requested cache block

– Index in the cache where the block will go

– Comparator (to prevent using the same MSHR for a miss to the 
same block)

– If  data to be forwarded to CPU at the same time as in the cache, 
needs addresses of registers (one per possible word/byte) 

– Valid bits (for writes)



Cache Perf. CSE 471 Autumn 02 19

Cache Hierarchy

• Two, and even three, levels of caches in most systems

• L2 (or L3, i.e., board-level) very large but since L1 filters 
many references, “local” hit rate might appear low (maybe 
50%) (compulsory misses still happen)

• In general L2 have longer cache blocks and larger 
associativity

• In general L2 caches are write-back, write allocate



Cache Perf. CSE 471 Autumn 02 20

Characteristics of Cache Hierarchy

• Multi-Level inclusion (MLI) property between off-board 
cache (L2 or L3) and on-chip cache(s) (L1 and maybe L2)
– L2 contents must be a superset of L1 contents (or at least have 

room to store these contents if L1 is write-back)

– If L1 and L2 are on chip, they could be mutually exclusive (and 
inclusion will be with L3)

– MLI very important for cache coherence in multiprocessor systems
(shields the on-chip caches from unnecessary interference)

• Prefetching at L2 level is an interesting challenge (made 
easier if L2 tags are kept on-chip)



Cache Perf. CSE 471 Autumn 02 21

“Virtual”  Address Caches

• Will get back to this after we study TLB’s

• Virtually addressed, virtually tagged caches
– Main problem to solve is the Synonym problem (2 virtual 

addresses corresponding to the same physical address).

• Virtually addressed, physically tagged
– Advantage: can allow cache and TLB accesses concurrently

– Easy and usually done for small L1, i.e., capacity < (page * ass.)

– Can be done for larger caches if O.S. does a form of page coloring 
such that “index” is the same for synonyms



Cache Perf. CSE 471 Autumn 02 22

Impact of Branch Prediction on Caches

• If we are on predicted path and:
– An I-cache miss occurs, what should we do: stall or fetch?

– A D-cache miss occurs, what should we do: stall or fetch?

• If we fetch and we are on the right path, it’s a win

• If we fetch and are on the wrong path, it is not necessarily 
a loss
– Could be a form of prefetching (if branch was mispredicted, there 

is a good chance that that path will be taken later)

– However, the channel between the cache and higher-level of 
hierarchy is occupied while something more pressing could be 
waiting for it


