olerating/hiding Memory Latency

One particular technique: prefetching

Goal: bring datain cache just in time for its use
— Not too early otherwise cache pollution
— Not too late otherwise “hit-wait” cycles

Under the constraints of (among others)
— Imprecise knowledge of instruction stream
— Imprecise knowledge of data stream

Hardware/software prefetching
— Workswell for regular stride data access
— Difficult when there are pointer-based accesses

Cache Perf. CSE 471 Autumn 02



Why, What, When, Where

Why?
— cf. goals. Hide memory latency and/or reduce cache misses

What

— ldeally a semantic object
— Practically a cache block, or a sequence of cache blocks

When
— ldedlly, just intime.
— Practically, depends on the prefetching technique

Where
— Inthecacheor in aprefetch buffer

Cache Perf. CSE 471 Autumn 02



Hardware Prefetching

* Nextline prefetching for instructions
— Bring missing block and the next one (if not already there)

e OBL “one block look-ahead” for data prefetching

— As Nextline but with more variations -- e.g. depends on whether
prefetching was successful the previous time

o Use of specia assists:
— Stream buffers, i.e., FIFO gueuesto fetch consecutive lines (good
for instructions not that good for data);
— Stream buffers with hardware stride detection mechanisms,

— Use of areference prediction table etc.

Cache Perf. CSE 471 Autumn 02



Software Prefetching

Use of special instructions (cache hints: touch in Power
PC, load in register 31 for Alpha, prefetch in recent
micros)

Non-binding prefetch (in contrast with proposals to
prefetch in registers).

— |f an exception occurs, the prefetch isignored.

Must be inserted by software (compiler analysis)
Advantage: no special hardware

Drawback: more instructions executed.

Cache Perf. CSE 471 Autumn 02



Metrics for Prefetching

Coverage: Prefetch hits/ misses without prefetching
Accuracy: useful prefetches/ number of prefetches
Timeliness. Related to number of hit-wait prefetches

In addition, the usefulness of prefetching isrelated to how
critical the prefetched data was

Cache Perf. CSE 471 Autumn 02



echniques to Reduce Cache Miss Penalty

Give priority to reads -> Write buffers

Send the requested word first -> critical word or wrap
around strategy

Sectored (subblock) caches
L ock-up free (non-blocking) caches
Cache hierarchy

Cache Perf. CSE 471 Autumn 02



Write Policies

L oads (reads) occur twice as often as stores (writes)
Miss ratio of reads and miss ratio of writes pretty much the
same

Although it is more important to optimize read
performance, write performance should not be neglected

Write misses can be delayed w/o impeding the progress of
execution of subsequent instructions

Cache Perf. CSE 471 Autumn 02 7



A Sample of Write Mechanisms

* Fetch-on-write and Write-allocate

— Proceed like on aread miss followed by awrite hit: preferred
method for write-back caches.

e No-fetch-on-write and no-write-allocate (“write-around”)

— The cacheis not modified on write misses. preferred method for
write-through caches

* No-fetch-on-write and write-allocate (“write-validate”)

— Writedirectly in cache and invalidate al other parts of the line
being written. Requires avalid bit/writeable entity. Good for
Initializing a data structure. Assumedly the best policy for
elimination of write misses in write-through caches but more
expensive (dirty bits)

Cache Perf. CSE 471 Autumn 02



Write Mechanisms (¢’ ed)

e write-before-hit, no-fetch-on-write and no-write-allocate

(“writeinvalidate”)

— Thedatais written in the cache totally in parallel with checking of
the tag. On amiss, therest of the lineisinvalidated as in the write-
validate case

— Possible only for direct-mapped write-through caches

* A mix of these policies can be (and has been) implemented
— Dictate the policy on a page per page basis (bits set in the page
table entry)
— Have the compiler generate instructions (hints) for dynamic
changesin policies (e.g. write validate on initialization of a data
structure)

Cache Perf. CSE 471 Autumn 02 9



Write Buffers

Reads are more important than:
— Writesto memory if WT cache
— Replacement of dirty linesif WB

Hence buffer the writes in write buffers

— Write buffers = FIFO gueues to store data

— Since writes have a tendency to come in bunches (e.g., on
procedure calls, context-switches etc), write buffers must be

(1 d%p”

Cache Perf. CSE 471 Autumn 02

10



Write Buffers (¢’ ed)

o Writes from write buffer to next level of the memory
hierarchy can proceed in parallel with computation

 Now |loads must check the contents of the write buffer;
also more complex for cache coherency in multiprocessors
— Allow read misses to bypass the writes in the write buffer

Cache Perf. CSE 471 Autumn 02 11



Coalescing Write Buffers and Write Caches

o Coalescing write buffers

— Writes to an address (block) already in the write buffer are
combined

» Note the tension between writing the coalescing buffer to memory at
high rate -- more writes -- vs. coalescing to the max -- but buffer
might become fulll

o Extend write buffersto small fully associative write caches
with WB strategy and dirty bit/byte.

— Not implemented in any machine | know of

Cache Perf. CSE 471 Autumn 02 12



Critical Word First

o Send first, from next level in memory hierarchy, the word
for which there was amiss

o Send that word directly to CPU register (or IF buffer if it’s
an |-cache miss) as soon as it arrives

* Need aone block buffer to hold the incoming block (and
snift it) before storing it in the cache

Cache Perf. CSE 471 Autumn 02 13



Sectored (or subblock) Caches

First cache ever (IBM 360/85 in late 60’ s) was a sector
cache

— On acache miss, send only a subblock, change the tag and
invalidate all other subblocks

— Saves on memory bandwidth
Reduces number of tags but requires good spatial locality
In application
Requires status bits (valid, dirty) per subblock

Might reduce false-sharing in multiprocessors
— But requires metadata status bits for each subblock
— Alpha 21164 L2 usesadirty bit/16 B for a64B block size

Cache Perf. CSE 471 Autumn 02 14



Stalus Sector Cache
bits \
tag Jsubblockl| subblockn

Cache Perf. CSE 471 Autumn 02

15



L ock-up Free Caches

Proposed in early 1980’ s but implemented only within the
last 10 years because quite complex

Allow cache to have severa outstanding miss requests (hit
under miss).

— Cache miss “happens’ during EX stage, i.e., longer (unpredictable)
latency

— Important not to slow down operations that don’t depend on results
of the load

Single hit under miss (HP PA 1700) relatively ssimple

For several outstanding misses, require the use of MSHR’s
(Miss Status Holding Register).

Cache Perf. CSE 471 Autumn 02 16



MSHR’s

e The outstanding misses do not necessarily come back in
the order they were detected

— For example, miss 1 can percolate from L1 to main memory while
miss 2 can be resolved at the L2 level

« Each MSHR must hold information about the particular
miss it will handle such as:
— Info. relative to its placement in the cache

— Info. relative to the “missing” item (word, byte) and where to
forward it (CPU register)

Cache Perf. CSE 471 Autumn 02 17



|mplementation of MSHR’ s

 Quiteavariety of aternatives

MIPS 10000, Alpha 21164, Pentium Pro, Il and IV

e One particular way of doing it:

Valid (busy) bit (limited number of MSHR’ s — structural hazard)
Address of the requested cache block
Index in the cache where the block will go

Comparator (to prevent using the same MSHR for amissto the
same bl ock)

If datato beforwarded to CPU at the same time as in the cache,
needs addresses of registers (one per possible word/byte)

Valid bits (for writes)

Cache Perf. CSE 471 Autumn 02 18



Cache Hierarchy

Two, and even three, levels of cachesin most systems

L2 (or L3, i.e, board-level) very large but since L1 filters
many references, “local” hit rate might appear low (maybe
50%) (compulsory misses still happen)

In general L2 have longer cache blocks and larger
associativity

In general L2 caches are write-back, write allocate

Cache Perf. CSE 471 Autumn 02 19



Characteristics of Cache Hierarchy

Multi-Level inclusion (MLI) property between off-board
cache (L2 or L3) and on-chip cache(s) (L1 and maybe L2)

— L2 contents must be a superset of L1 contents (or at least have
room to store these contentsif L1 iswrite-back)

— If L1 and L2 are on chip, they could be mutually exclusive (and
Inclusion will be with L3)

— MLI very important for cache coherence in multiprocessor systems
(shields the on-chip caches from unnecessary interference)

Prefetching at L2 level is an interesting challenge (made
easier If L2 tags are kept on-chip)

Cache Perf. CSE 471 Autumn 02 20



“Virtual” Address Caches

* Will get back to this after we study TLB’s
 Virtually addressed, virtually tagged caches

— Main problem to solve is the Synonym problem (2 virtual
addresses corresponding to the same physical address).

 Virtually addressed, physically tagged
— Advantage: can allow cache and TLB accesses concurrently
— Easy and usually done for small L1, i.e., capacity < (page * ass.)

— Can be donefor larger cachesif O.S. does aform of page coloring
such that “index” isthe same for synonyms

Cache Perf. CSE 471 Autumn 02 21



lmpact of Branch Prediction on Caches

If we are on predicted path and:
— An |-cache miss occurs, what should we do: stall or fetch?
— A D-cache miss occurs, what should we do: stall or fetch?

If we fetch and we are on theright path, it’sawin

If we fetch and are on the wrong path, it is not necessarily
aloss

— Could be aform of prefetching (if branch was mispredicted, there
IS agood chance that that path will be taken | ater)

— However, the channel between the cache and higher-level of
hierarchy is occupied while something more pressing could be
waiting for it

Cache Perf. CSE 471 Autumn 02 22



