
Cache intro CSE 471 Autumn 02 1

Principle of Locality: Memory Hierarchies

� Text and data are not accessed randomly
� Temporal locality

� Recently accessed items will be accessed in the near future (e.g., 
code in loops, top of stack)

� Spatial locality
� Items at addresses close to the addresses of recently accessed items 

will be accessed in the near future (sequential code, elements of 
arrays)

� Leads to memory hierarchy at two main interface levels:
� Processor - Main memory -> Introduction of caches
� Main memory - Secondary memory -> Virtual memory (paging 

systems)

Cache intro CSE 471 Autumn 02 2

Processor - Main Memory Hierarchy

� Registers: Those visible to ISA + those renamed by 
hardware

� (Hierarchy of) Caches: plus their enhancements
� Write buffers, victim caches etc�

� TLB�s and their management
� Virtual memory system (O.S. level) and hardware assists 

(page tables)
� Inclusion of information (or space to gather information) 

level per level
� Almost always true

Cache intro CSE 471 Autumn 02 3

Questions that Arise at Each Level

� What is the unit of information transferred from level to 
level ?
� Word (byte, double word) to/from a register
� Block (line) to/from cache
� Page table entry + misc. bits to/from TLB
� Page to/from disk

� When is the unit of information transferred from one level 
to a lower level in the hierarchy?
� Generally, on demand (cache miss, page fault)
� Sometimes earlier (prefetching)

Cache intro CSE 471 Autumn 02 4

Questions that Arise at Each Level (c�ed)

� Where in the hierarchy is that unit of information placed?
� For registers, directed by ISA and/or register renaming method
� For caches, in general in L1 

� Possibility of hinting to another level (Itanium) or of bypassing the 
cache entirely, or to put in special buffers 

� How do we find if a unit of info is in a given level of the 
hierarchy?
� Depends on mapping; 
� Use of hardware (for caches/TLB) and software structures (page 

tables)

Cache intro CSE 471 Autumn 02 5

Questions that Arise at Each Level (c�ed)

� What happens if there is no room for the item we bring in?
� Replacement  algorithm; depends on organization

� What happens when we change the contents of the info?
� i.e., what happens on a write?

Cache intro CSE 471 Autumn 02 6

Caches (on-chip, off-chip)

� Caches consist of a set of entries where each entry has:
� block (or line) of data: information contents 
� tag: allows to recognize if the block is there 
� status bits: valid, dirty, state for multiprocessors etc.

� Capacity (or size) of a cache:                                  
number of blocks * block size

i.e., the cache metadata (tag + status bits) is not counted in the cache 
capacity

� Notation
� First-level (on-chip) cache: L1; 
� Second-level (on-chip/off-chip): L2; third level (Off-chip) L3



Cache intro CSE 471 Autumn 02 7

Cache Organizations

� Direct-mapped cache. 
� A given memory location (block) can only be mapped in a single 

place in the cache. Generally this place given by:
(block address) mod (number of blocks in cache)

� To make the mapping easier, the number of blocks in a direct-
mapped cache is a power of 2.

� There have been proposals for caches, for vector processors, that 
have a number of blocks that are Mersenne prime numbers (the 
modulo arithmetic for those numbers has some �nice� properties)

Cache intro CSE 471 Autumn 02 8

Cache Organizations (c�ed)

� Fully-associative cache. 
� A given memory location (block) can be mapped anywhere in the 

cache. 
� No cache of decent size is implemented this way but this is the 

(general) mapping for pages (disk to main memory), for small 
TLB�s, and for some small buffers used as cache assists (e.g., 
victim caches, write caches).

Cache intro CSE 471 Autumn 02 9

Cache Organizations (c�ed)

� Set-associative cache. 
� Blocks in the cache are grouped into sets and a given memory 

location (block) maps into a set. Within the set the block can be 
placed anywhere. Associativities of 2 (two-way set-associative), 3, 
4, 8 and even 16 have been implemented.

� Direct-mapped = 1-way set-associative
� Fully associative with m entries is m-way set associative

� Capacity
� Capacity = number of sets * set-associativity * block size

Cache intro CSE 471 Autumn 02 10

Cache Hit or Cache Miss?

� How to detect if a memory address (a byte address) has a 
valid image in the cache:

� Address is decomposed in 3 fields:
� block offset or displacement (depends on block size)
� index (depends on number of sets and set-associativity)
� tag (the remainder of the address)

� The tag array has a width equal to tag 

Cache intro CSE 471 Autumn 02 11

Hit Detection

tag index displ.

Example: cache capacity C, block size b

Direct mapped: displ = log2 b; index = log2(C/ b); tag = 32 -index - displ

N -way S.A: displ = log2 b; index = log2(C/ bN); tag = 32 -index - displ

So what does it mean to have 3-way (N=3) set-associativity?

Cache intro CSE 471 Autumn 02 12

Why Set-associative Caches?

� Cons
� The higher the associativity the larger the number of comparisons 

to be made in parallel for high-performance (can have an impact 
on cycle time for on-chip caches)

� Higher associativity requires a wider tag array (minimal impact)

� Pros
� Better hit ratio
� Great improvement from 1 to 2, less from 2 to 4, minimal after that 

but can still be important for large L2 caches
� Allows parallel search of TLB and caches for larger (but still 

small) caches (see later)



Cache intro CSE 471 Autumn 02 13

Replacement Algorithm

� None for direct-mapped
� Random or LRU or pseudo-LRU for set-associative caches

� Not an important factor for performance for low associativity. Can 
become important for large associativity and large caches

Cache intro CSE 471 Autumn 02 14

Writing in a Cache

� On a write hit, should we write:
� In the cache only (write-back) policy
� In the cache and main memory (or higher level cache) (write-

through) policy

� On a write miss, should we
� Allocate a block as in a read (write-allocate)
� Write only in memory (write-around)

Cache intro CSE 471 Autumn 02 15

The Main Write Options

� Write-through (aka store-through)
� On a write hit, write both in cache and in memory
� On a write miss, the most frequent option is write-around
� Pro: consistent view of memory (better for I/O); no ECC required

for cache
� Con: more memory traffic (can be alleviated with write buffers)

� Write-back (aka copy-back)
� On a write hit, write only in cache (requires dirty bit)
� On a write miss, most often write-allocate (fetch on miss) but 

variations are possible
� Pro-con reverse of write through

Cache intro CSE 471 Autumn 02 16

Classifying the Cache Misses: The 3 C�s

� Compulsory misses (cold start)
� The first time you touch a block. Reduced (for a given cache 

capacity and associativity) by having large blocks

� Capacity misses
� The working set is too big for the ideal cache of same capacity and 

block size (i.e., fully associative with optimal replacement 
algorithm). Only remedy: bigger cache!

� Conflict misses (interference)
� Mapping of two blocks to the same location. Increasing

associativity decreases this type of misses.

� There is a fourth C: coherence misses (cf. multiprocessors)

Cache intro CSE 471 Autumn 02 17

Example of Cache Hierarchies

MICRO L1 L2 

Alpha 21064 8K(I), 8K(D), WT,    
1-way, 32B 

128K to 8MB,WB, 
1-way,32B 

Alpha 21164 8K(I), 8K(D), WT,    
1-way, 32B ,D l-u fr. 

96K, WB, on-chip,   
3-way,32B,l-u free 

Alpha 21264 64K(I), 64K(D),?,     
2-way, ? 

up to 16MB 

Pentium 8K(I),8K(D),both,      
2-way, 32 B 

Depends 

Pentium Pro 8k(I),8K(D), WB, 
4-way(I),2-way(D), 
32B,l-u free 

256K,32B,4-way, 
tightly-coupled 

 

 

Cache intro CSE 471 Autumn 02 18

Examples (c�ed)

PowerPC 620 32K(I),32K(D),WB 
8-way, 64B 

1MB TO 128MB, 
WB, 1-way 

MIPS R10000 32K(I),32K(D),l-u, 
2-way, 32B 

512K to 16MB,       
2-way, 32B 

 

 


