
Branch pred. CSE 471 Autumn 02 1

Branch Target Buffers

• BPB: Tag + Prediction

• BTB: Tag + prediction + next address

• Now we predict and “precompute” branch outcome and
target address during IF
– Of course more costly

– Can still be associated with cache line (UltraSparc)

– Implemented in a straightforward way in Pentium; not so
straightforward in Pentium Pro (see later)

– Decoupling (see later) of BPB and BTB in Power PC and PA-8000

– Entries put in BTB only on taken branches (small benefit)

Branch pred. CSE 471 Autumn 02 2

BTB layout

(Partial) PC Next PC (target address) Prediction
2-bit counterTag cache-like

Target instruction address or
I-cache line target address

During IF, check if there is a hit in the BTB. If so, the
instruction must be a branch and we can get the target address
– if predicted taken – during IF. If correct, no stall

Branch pred. CSE 471 Autumn 02 3

Another Form of Misprediction in BTB

• Correct “Taken” prediction but incorrect target address

• Can happen for “return” (but see later)

• Can happen for “indirect jumps” (rare but costly)
– Might become more frequent in object-oriented programming a la

C++, Java

Branch pred. CSE 471 Autumn 02 4

Decoupled BPB and BTB

• For a fixed real estate (i.e., fixed area on the chip):
– Increasing the number of entries implies less bits for history or no

field for target instruction or fewer bits for tags (more aliasing)

– Increasing the number of entries implies better accuracy of
prediction.

• Decoupled design
– Separate – and different sizes – BPB and BTB

– BPB. If it predicts taken then go to BTB (see next slide)

– Power PC 620: 2K entries BPB + 256 entries BTB

– HP PA-8000: 256*3 BPB + 32 (fully-associative) BTB

Branch pred. CSE 471 Autumn 02 5

Decoupled BTB

Tag Hist

Tag Next address

PC

BPB
BTB

(1) access BPB

(2) If predict T
then access BTB

(3) if
match
then have
target
address

Note: the BPB
does not
require a tag,
so could be
much larger

Branch pred. CSE 471 Autumn 02 6

Correlated or 2-level branch prediction

• Outcomes of consecutive branches are not independent
• Classical example

loop
….

if (x = = 2) /* branch b1 */
x = 0;

if (y = = 2) /* branch b2 */
y = 0;

if (x != y) /* branch b3 */
do this
else do that

Branch pred. CSE 471 Autumn 02 7

What should a good predictor do?

• In previous example if both b1 and b2 are Taken, b3
should be Not-Taken

• A two-bit counter scheme cannot predict this behavior.

• Needs history of previous branches hence correlated
schemes for BPB’s
– Requires history of n previous branches (shift register)

– Use of this vector (maybe more than one) to index a Pattern
History Table (PHT) (maybe more than one)

Branch pred. CSE 471 Autumn 02 8

General idea: implementation using a global
history register and a global PHT

Global history register
last k branches (t =1, nt =0)

PHT

2 entries of
2-bit counters

k

t t tnt nt nt

Branch pred. CSE 471 Autumn 02 9

Classification of 2-level (correlated) branch
predictors

• How many global registers and their length:
– GA: Global (one)
– PA: One per branch address (Local)
– SA: Group several branch addresses

• How many PHT’s:
– g: Global (one)
– p : One per branch address
– s: Group several branch addresses

• Previous slide was GAg (6,2)
– The “6” refers to the length of the global register
– The “2” means we are using 2-bit counters

Branch pred. CSE 471 Autumn 02 10

Two level Global predictors

GA

g

GA

p (or s)
one PHT per address
or set of addresses

GAg (5,2)
GAp(5,2)

PC

Branch pred. CSE 471 Autumn 02 11

Two level per-address predictors

g

PAg (4,2) PAp(4,2)

PC
PC

History
(shift)
registers;
one per
address

One global PHT

History
(shift)
registers;
one per
address

p (or s)
one PHT per address
or set of addresses

Branch pred. CSE 471 Autumn 02 12

Gshare: a popular predictor
(the one simulated in Bliss)

Global history register

PC

XOR

PHT

The Global history
register and selected
bits of the PC are
XORed to provide the
index in a single PHT

The idea is to try and
avoid aliasing, i.e.
avoid interference for
two different branches
with the same pattern

Branch pred. CSE 471 Autumn 02 13

Hybrid Predictor (schematic)

PC

Global

P1c/P2c
P1 (e.g.,
local PHT)

P2(e.g.,
gshare)

Selects which
predictor to use

(e.g. tournament
predictor)

The green,
red, and
blue arrows
might
correspond
to different
indexing
functions.

Branch pred. CSE 471 Autumn 02 14

Tournament Predictor

Use Pred 1

Use Pred 1

Use Pred 2

Use Pred 2

0: pred is incorrect; 1 pred is correct;
a/b pred for Pred 1 / Pred 2

0/0, 1/0, 1/1

0/1 0/11/0 1/0

0/0, 0/1, 1/1

0/0,1/1 0/0,1/1

0/1

1/0

Branch pred. CSE 471 Autumn 02 15

Evaluation

• The more hardware (real estate) the better!
– GA s for a given number of “s” the larger G the better; for a given

“G” length, the larger the number of “s” the better.

• Note that the result of a branch might not be known when
the GA (or PA) needs to be used again (because we might
issue several instructions per cycle). It must be
speculatively updated (and corrected if need be).

• Ditto for PHT but less in a hurry?

Branch pred. CSE 471 Autumn 02 16

Performance

• Hybrid predictor consisting of a local predictor of size s1
and a global predictor of size s2 seems to perform better
than a local or global predictor of size s > s1 + s2

• Use machine learning (AI) techniques?
– Start with a “quick and dirty” predictor yielding a prediction in one

cycle

– Concurrently use a slower, more accurate predictor. If its
prediction disagrees with the fast predictor, roll back the
computation.

Branch pred. CSE 471 Autumn 02 17

Summary: Anatomy of a Branch Predictor

Prog. Exec. Event selec. Pred. Index.

Pred. Mechan.Feedback

Recovery?

All instructions (BTB)
Branch inst. (BPB)

PC and/or global history
and/or local history

One level (BPB)
Two level (History +PHT)
Decoupled BTB + BPB

Static (ISA)
1 or 2-bit saturating counters

Branch outcome
Update pred. mechanism
Update history (updates
might be speculative)

Branch pred. CSE 471 Autumn 02 18

Return jump stack

• Indirect jumps difficult to predict except returns from
procedures (but luckily returns are about 85% of indirect
jumps)

• If returns are entered with their target address in BTB,
most of the time it will be the wrong target
– Procedures are called from many different locations

• Hence addition of a small “return stack”; 4 to 8 entries are
enough (1 in MIPS R10000, 4 in Alpha 21064, 4 in
Sparc64, 12 in Alpha 21164)
– Checked during IF, in parallel with BTB.

Branch pred. CSE 471 Autumn 02 19

Resume buffer

• In some “old” machines (e.g., IBM 360/91 circa 1967),
branch prediction was implemented by fetching both paths
(limited to 1 branch)

• Similar idea: “resume buffer” in MIPS R10000.
– If branch predicted taken, it takes one cycle to compute and fetch

the target

– During that cycle save the Not-Taken sequential instruction in a
buffer (4 entries of 4 instructions each).

– If mispredict, reload from the “resume buffer” thus saving one
cycle

