CSE 471 Autumn 2002

Computer Design and Organization

Assignment #2
Due: Wednesday October 23

In this assignment you will compare the performance of various branch predictors and reason about
their performance. You will modify the Bliss simulator in order to perform the experiments. You will
run experiments using the same Spec benchmark perl as in Assignment #1.

You can be in teams of two but choose a different partner from the one you were paired with in
Assignment #1 (if any).

Turn in your Assignment following the Report guidelines for the following questions.

1. How is branch prediction implemented in the original Bliss i.e., describe in detail the prediction
mechanism and how it is indexed. What is the organization of the Branch Target Buffer? (In the
remainder of this assignment you won’t have to deal with the BTB.). At this time you should also
have the results of Experiments 2 and 3 from Assignment #1. What is the frequency of branches for
the application you simulated (Note: Bliss distinguishes between conditional branches

—System. ... . RetiredOperations.branch

for which a prediction is made and indirect branches, including call and returns,

—System. ... . RetiredOperations.ibranch

for which only BPB or return stack predictions are made). Is this consistent with the “conventional
wisdom” found, for example, in your textbook? If not, can you conjecture why not?

For simulating the static branch predictors defined below, use the set-up of Experiment 2 of Assignment
#1.

For simulating the dynamic branch predictors defined below, use the set-up of Experiments 2 and 3 of
Assignment #1.

Before answering the next question:

e Implement a static predictor with the policy “Always predict branch not taken” (BNT). Simulate
and record the results.

e Implement a static predictor with the policy “Predict backward branches to be taken and predict
forward branches not taken” (BTFNT). Simulate and record the results.

e Implement a dynamic predictor with a table of 1K 2-bit counters indexed by the PC (Note: Bliss
instructions are 32-bits long and the 2 rightmost bits of the PC should not be part of the index).
Simulate and record the results.

e Implement a dynamic predictor with a set of 1K 2-bit counters that are accessed via the PC but
as in a direct-mapped cache structure (the default policy is NotTaken in case of a miss). Simulate
and record the results.

2. Compare the accuracies of the various branch predictors. As a guideline, you should include at least
the following comparisons:



e Compare the results from the two static branch predictors. Are the results consistent with what
you expected?

e Compare the results from the two different structures for the 2-bit counters. Discuss. What is
the influence of the warm-up?

e Compare the results from the best static branch predictor with the results of the two 2-bit counter
schemes. Discuss.

e Compare the results of the two 2-bit counter schemes with that of the GShare. Discuss. In
particular since GShare requires much less hardware than the cache-like structure, do you think
that GShare is an efficient predictor (for this particular application; don’t over generalize).

3. A criticism of the GShare predictor is that there can be too much aliasing, i.e., different branches with
different history mapping to the same 2-bit counter. Without increasing the number of 2-bit counters,
describe, implement and simulate a scheme that you think could reduce the amount of aliasing. Discuss
your results. Of course there is no single solution to this problem and your scheme might not work
well for this application but you should give reasons why you think it should work.



