CSE 471 Autumn 2002

Computer Design and Organization

Midterm
Wednesday November 6th

NAME :

Do all your work on these pages. Do not add any pages. Use back pages if
necessary. Show your work to get partial credit.

This exam is worth 40 points. After each question, you will find the number
of points it is worth. You should spend approximately x minutes on a question
worth x points. That will leave you with 10 minutes to read the statement of
the problem and to look over your work.

1. 20 points

e (a) 3 points
b) 3 points

e (c) 2 points

d) 2 points

)
)

® (¢

f

5 points

(
(
(
(
(
(

5 points

2. 20 points

e (a) 10 points
e (b) 10 points

1. Branch Prediction (20 points)

Processor XYZ performs branch prediction with:

e A 256 entry, 2-way set associative Branch Target Buffer (BTB) that
records only the branches that are predicted taken (T). A valid bit is
included in each entry to that effect (i.e., if the branch was entered in the
BTB and is subsequently predicted to be not taken (NT) the valid bit is
turned off). On a miss to the BTB, the default prediction is NT.

e A table of 1K 2-bit saturating counters

(a) (3 points)
Complete the state diagram of a 2-bit saturating counter shown below by show-
ing labelled transitions between states.

Strongly Taken NT Weakly Taken

Weakly Not Taken Strongly Not Taken

Note: Thisisagray code counter

(b) (3 points)

Give the layout, i.e., the various fields and their lengths, of a BTB entry. You
can assume a 32-bit ISA and that all instructions are of the same length (4
bytes).

FEach entry consists of:

e a tag (23 bits) since we need to have an index of 7 bits to access one of
the 128 sets and the last 2 bits of the PC are a “displacement”.

o a next PC of 30 bits with the 2 rightmost bits assumed 00.

e ¢ valid bit

(¢) (2 points)

At stage 1 of execution, corresponding to IF, the BTB is accessed. How is
the BTB look-up performed and what are the possible outcomes? In this sub-
question and the remainder of Question #1 you can assume that there are no
indirect jumps and that on a valid hit to the BTB the target address in the
BTB is correct.

The BTB is accessed via an index of 7 bits (bits 2-8) of the PC. The 23 high-
order bits of the PC are compared with the two tags of the indexed set. There
are 8 possibilities:

e No match. The prediction is NT. The next instruction (at PC + 4) is
fetched.

e Maich and invalid bit. The prediction is NT. The next instruction (at PC
+ 4) is fetched.

e Match and valid bit. The prediction is T. The next PC of the matching
entry becomes PC and the instruction at that PC will be fetched on the
next cycle.

(d) (2 points)

At stage 2, corresponding to ID, the instruction is decoded and the address of
the target instruction is computed. If the opcode indicates a conditional branch
the BPB is accessed. How is the BPB look-up performed and what are the
possible outcomes?

The BPB is accessed by the 10 rightmost bits of the PC (excluding the rightmost
2) i.e. bits 2-11. It returns a 2-bit “value” that is interpreted as predict T or
predict NT according to the diagram of the Figure in answer (a).

(e) (5 points)
Assume that the prediction of the BPB has priority over that of the BTB.
Indicate what happens when:

1. Predictions in BTB and BPB agree.
2. Predictions in BTB and BPB disagree.

(At this point the target address returned by the BTB, if any, should be checked,
but we have assumed it’s always correct).

Case 1: Predictions agree. Proceed with the current flow of instructions.

Case 2: Predictions disagree. The instructions fetched after the branch need to
be squashed. Since BPB has priority:

o [f BPB predicted T, the PC must be set to the target instruction address
computed during this cycle.

e [f BPB predicted NT, the PC must be set to the PC of the branch + 4

Note: we have assumed that IF and ID might take more than one stage in the
pipeline or that more than one instruction can issue per cycle. If there is only
one stage and a single instruction issue replace “The instructions fetched” by
“The instruction fetched”.

(f) (5 points)

At stage 7 (there is no special significance in the number 7), corresponding to
the end of the EX stage, the branch outcome is available. Indicate what happens
in the 4 cases of the cross product

(Predict Taken, Predict Not Taken) * (Outcome Taken, Outcome Not Taken).
Don’t forget the updates to BTB and BPB.

In all cases, the BPB is updated, i.e., the 2-bit counter corresponding to the
branch is incremented if the outcome is T and decremented if the outcome is
NT.

In all cases the BTB is checked. If the outcome is T and:
e There is an entry in the BTB corresponding to the branch, set the bit to
valid (even if it were already valid; it won’t hurt)

o There is no matching entry in the BTB. Replace one of the existing ones
in the set where the entry should be (e.g., replace one with the valid bit
off, or if not replace one of the two “randomly”) and set a new entry with
current (tag, target address, valid bit) as in answer to question (b).

If the outcome is NT and:

e There is an entry in the BTB corresponding to the branch, then set the
valid bit to invalid.

e There is no matching entry in the BTB. Do nothing.
Finally, if the predictions and outcomes disagree and:

o The outcome was T and the prediction was NT, squash all instructions
after the branch, and reset PC to the computed target address.

o The outcome was NT and the prediction was T, squash all instructions
after the branch, and reset PC to branchPC + 4

2. Tomasulo’s algorithm (20 points; 10 each for each “cycle”)

In the next two pages, you’ll find tables showing the state of the Reservation
stations, Reorder buffer, and FP register status for an out-of-order execution
and in-order completion processor implementing Tomasulo’s algorithm at a
given stage of execution of a MIPS code sequence. Filling of the tables has been
done assuming the following:

e Only one instruction can issue per cycle

e The reorder buffer had depth 8 (results of loads are forwarded via the
common data bus -CDB- to the reorder buffer)

e All functional units are pipelined

e There are 2 FP multiply reservation stations
e There are 3 FP add reservation stations

e There are 3 integer reservation stations

e Memory requests occur and complete in one cycle, i.e., barring structural
hazards, loads issue in one cycle - say t -, "execute” in the next (t+1),
"write” in the next (t42), and a dependent instruction can start execution
one cycle later, i.e., at t+3

e No exceptions occur during the execution of the code

e All integer operations (including loads and stores) require 1 execution
cycle

e All FP multiplication operations require 4 execution cycles
e All FP addition operations require 2 execution cycles

e There is a single CDB and, on a CDB write conflict, the instruction issued
earlier gets priority

e Execution for a dependent instruction can begin on the cycle after its

operand is broadcast on the CDB

e All reservation stations, reorder buffer, and functional units were empty
and not busy when the code started execution

e Integer registers are not shown in the tables and you don’t have to show
their state

e The ”Value” column gets updated when the value is broadcast on the
CDB

When filling up the tables, do not erase any information already present. Of
course, you may overwrite some entries, e.g., from "not busy” to "busy” or any
other one if some state/value change makes it necessary.

Given the sequence of MIPS code:

MULD F0,F2,F4
ADD.D F6,F6,F0
ADD.D F2F2FS

L.D F4, 0(R2)
DADDUI R1,R1,3

MUL.D F8,F10,F12
ADD.D F4,F4.F10
DADDUI R2,R2,1

The tables in the next two pages show the state at the end of the cycle in which
the second MUL.D (the one in italics) issued.

If more than one instruction is ready to “write” all but the one writing stay in
the “execute” state.

Executei means the ith stage of the Execute of a given functional unit.

If all stages of a functional unit are busy and an instruction is in a reservation
station of that unit, it is in state “issue”.

On the next page, show the state after the next cycle. On the page after that,
show the state after two cycles.

Name | Busy | op V; Vi | @ | @k | Dest
Add1 Y | ADD.D F6 | (#1) #2
Add2 N | ADD.D F2 | F8 #3
Add3 Y | ADD.D F10 | #4 H#7
Multl | N | MUL.D F2 | F4 #1
Mult2 | Y | MUL.D |F10| F12 #6
Int1 Y | LD R2 #4
Int2 Y | DADDUI | R1 8 #5
Int3 N

Table 1: Reservation stations; Changes in Add2 and Add3

Entry | Busy | Instruction State Dest | Value
1 N | MUL.D FO0,F2,F4 | Commit FO | F2 * F4
2 Y | ADD.D F6,F6,F0 Executel | F6
3 Y | ADD.D F2F2,F8 | Write F2 | F2*F8
4 Y |L.D F4, 0(R2) Memory | F4
5 Y | DADDUI R1,R1,8 | Executel | R1
6 Y MUL.D F8,F10,F12 | Executel | F8
7 Y | ADD.D F4,F4F10 | Issue F4
8 N
Table 2: Reorder buffer; Changes in entries 1, 2,3,7

Field FO|F2|F4 | F6 | F8 | F10 | F12

Reorder # 3171216

Busy NI Y|Y|Y]|Y

Table 3: FP register status; Changes in F0 and F4

Name | Busy | op V; Vi | Qj | Qx| Dest
Add1 Y | ADD.D F6 | (#1) #2
Add2 N | ADD.D F2 F8 #3
Add3 Y | ADD.D (#4) | F10 #H7
Multl | N | MUL.D F2 F4 #1
Mult2 | Y | MUL.D F10 | F12 #6
Int1 N | LD R2 #4
Int2 Y | DADDUI | R1 8 #5
Int3 Y | DADDUI | R2 1 #8

Table 4: Reservation stations; Changes in Add3, Intl and Int3

Entry | Busy | Instruction State Dest | Value
1 N | MUL.D FO0,F2,F4 | Gone FO | F2 *F4
2 Y | ADD.D F6,F6,F0 Execute2 | F6
3 Y | ADD.D F2F2,F8 | Write F2 | F2 *F8
4 Y |L.D F4, 0(R2) Write F4 | Mem(R2)
5 Y | DADDUI R1,R1,8 | Executel | R1
6 Y MUL.D F8,F10,F12 | Execute2 | F8
7 Y | ADD.D F4,F4F10 | Issue F4
8 Y | DADDUI R2,R2,1 | Issue R2
Table 5: Reorder buffer; Changes in entries, 2,3,4,6,8

Field FO | F2 | F4 | F6 | F8 | F10 | F12

Reorder # 3171216

Busy NI Y|Y|Y]|Y

Table 6: FP register status: no change

