CSE 471 Autumn 2001

Computer Design and Organization

Midterm
Wednesday November 7th

NAME :

Do all your work on these pages. Do not add any pages. Use back pages if
necessary. Show your work to get partial credit.

This exam is worth 40 points. After each question, you will find the number
of points it is worth. You should spend approximately x minutes on a question
worth x points. That will leave you with 10 minutes to read the statement of
the problem and to look over your work.
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The figure below sketches the skeleton of an out-of-order processor that can dis-
patch, issue, and execute 32-bit instructions out-of-order but requires a commit
step to complete them in order. It has two functional units: one for integer,
load/store and branches, and the other for floating-point operations. Each of
the two units has one reservation station. There is a reorder buffer and a register
file. Communication between various units use a Common Data Bus (CDB).

Many of the features of this single issue processor are left undefined on purpose;
you’ll have to define some through your answers to the questions that follow.

The stages through which an instruction go through are:

1. Fetch (IF in the figure).

2. Decode, issue, and dispatch (ID). In this stage, structural hazards are
detected (the flow of instructions stalls if there is a structural hazard),
renaming takes place, reservation station(s) are filled etc.

3. Execute: The integer unit takes 2 cycles to execute; the floating-point unit
takes 4. The units are pipelined.

4. Commit.

res. station

F—p Unit Register file

Integer unit

res. station
Reorder buffer

CDB



1. (20 points) (This question continues on the next 3 pages)
Associated with the processor is a Branch Prediction Unit. It consists of:

e An untagged Branch Prediction Buffer (BPB) of 1024 2-bit saturating
counters.

e A direct-mapped Branch Target Buffer (BTB) of 256 entries.

(a) (1 point)
The BPB is accessed using an index formed by XORing the PC (Program
Counter) bits (194x-1,19) with PC bits (3+x-1,3). What is the value of x?

(b) (3 points)
How many bits are needed for each entry of the BTB. You can assume that the
two rightmost bits of the 32-bit PC are always 0.

Consider now the flow of a branch instruction through the pipeline.

(c) (3 points)
What actions related to branch prediction occur during the IF stage?



(d) (2 points)
What actions related to branch prediction/execution occur during the ID stage?

(e) (3 points)
What actions related to branch prediction/execution occur at the end of the
EX stage?



(f) (2 points)
What actions related to branch execution occur during the commit stage?

(g) (4 points)

The BPB is now replaced by a 2-level branch predictor. The global history is
recorded by 2 shift registers of 10 bits each. The Pattern History Table consists
of 1024 2-bit saturating counters. The branch predictor is thus an SAg(10,2).

How is the direction of a branch predicted?
When and how are the history registers being updated?



(h) (2 points)
What is needed to transform the 2-level predictor into a gshare predictor?



2. (20 points) (This question continues on the next 2 pages)

The processor shown on page 2 has a MIPS-like (or DLX-like) ISA and is the
subject of this question.

(a) (4 points)

Give examples of sequences of instructions (instructions can be written in the
form R1 < — R2 4+ R3) exhibiting respectively RAW, WAW, and WAR
hazards. Which of these hazards is independent of the underlying architecture?

(b) (2 points)
The instruction stream stalls in the presence of structural hazards. Indicate two
sources of structural hazards.



(¢) (3 points)
Which units in the Figure should broadcast their results on the CDB and which
should listen to that broadcast?

(d) (8 points)

There are several possibilities for implementing register renaming in this proces-
sor. Describe one particular implementation. Be sure to specify what happens
at the various stages, how you allocate/deallocate resources etc.



(e) (3 points)
In the processor shown in the figure, throughput could be enhanced if comple-
tion out-of-order was allowed. Why is it not a good idea to allow out-of-order

completion?



