CSE 471 Autumn 2001

Computer Design and Organization

Final

Friday December 14th

NAME :

Do all your work on these pages. Do not add any pages. Use back pages if
necessary. Show your work to get partial credit.

This exam is worth 100 points. After each question, you will find the number
of points it is worth. You should spend approximately x minutes on a question
worth x points. That will leave you with 15 minutes to read the statement of
the problem and to look over your work.

1. e 8 points

2. e (a) 12 points
e (b) 18 points

)
)
3. e (a) 4 points
(b) 8 points
)
)
)
)

(c) 12 points

(d) 10 points

4. e (a) 10 points

(b) 10 points

5. e 8 points

1. (8 points; 1 each for correct true or false)

Answer by True or False

e The accuracy of branch prediction does not impact the performance of an
in-order superscalar processor.

e The accuracy of branch prediction does not impact the performance of an
out-of order processor.

e Multiple issue of instructions provides the opportunity for more perfor-
mance benefits in out-of-order processors than in in-order processors

e Victim caches are more efficient when used in conjunction with direct-
mapped caches rather than with 4-way set-associative caches.

e With lock-up free caches, there is no need to use synchronization primi-
tives.

e A TLB is still necessary for performance/protection reasons when using a
virtually addressed, virtually tagged L1 cache.

e In shared-bus multiprocessor systems, it is feasible to use a directory pro-
tocol rather than a snoopy protocol.

e In NUMA multiprocessors, it is feasible to use a snoopy protocol rather
than a directory protocol.

2. (12 points for part (a) and 18 points for part (b). The two parts are inde-
pendent of each other)

In the next two pages, you'll find tables showing the state of the Reservation sta-
tions, Reorder buffer, and FP register status for an out-of-order execution and
in-order completion processor implementing Tomasulo’s algorithm at a given
stage of execution of a code sequence (instruction formats are similar to those
you worked with in Assignment #3). Filling of the tables has been done assum-
ing the following:

e Only one instruction can issue per cycle

The reorder buffer has depth 8 (results of loads are forwarded via the
common data bus -CDB- to the reorder buffer)

All functional units are pipelined.

There are 2 FP multiply reservation stations

There are 3 F'P add reservation stations

There are 3 integer reservation stations

Memory requests occur and complete in one cycle, i.e., barring structural
hazards, loads issue in one cycle - say t -, “execute” in the next (t+1),
“write” in the next (t42), and a dependent instruction can start execution
one cycle later, i.e., at t+3

e No exceptions occur during the execution of the code
e All integer operations (including loads and stores) require I cycle in their

execute stage

e All FP multiplication operations require 4 cycles in their execute stage
e All FP addition operations require 2 cycles in their execute stage
e There is a single CDB and, on a CDB write conflict, the instruction issued

the earliest gets priority

Execution for a dependent instruction can begin on the cycle after one of
its operand is broadcast on the CDB if all other conditions for its execution
have been met

All reservation stations, reorder buffer, and functional units were empty
and not busy when the code started execution

Integer registers are not shown in the tables and you don’t have to show
their state

When filling up the tables, you may overwrite some entries, e.g., from
“not busy” to “busy” or any other one if some state/value change makes
it necessary.

The “Value” column gets updated when the value is broadcast on the
CDB

If you need to make any other assumption, state it clearly on
this or the next page

(a) The tables below show the state at the end of the cycle in which the second
SUBI (the one that is commented) from the code below issued. Show the state

after the next cycle.

LD FO, O(R1)

LD F2, 0(R2)

MULTD F4, FO, F2

ADDD F6, FO, FO

SUBI R1, R1, 8

SUBI R2, R2, 8 /*this onex*/

ADDI R3, R3, 1
Name | Busy | Op Vi | Vi | Q; | @i | Dest
Addl Y ADDD Fo | FO #4
Add2
Add3
Multl Y MULTD | FO | F2 #3
Mult2
Intl Y SUBI R2 | 8 #6
Int2 N LD R2 #2
Int3 Y SUBI R1| 8 #5

Table 1: Reservation Stations. “F0” in column V; refers to the value stored
in FO. We show a reservation station to be busy even when the associated
operation is being executed in the functional unit.

Entry | Busy | Instruction State Destination | Value

1 N | LD Fo0, 0(R1) Commit FO Mem[0([R1])]
2 N LD F2, 0(R2) Commit F2 Mem[0([R2])]
3 Y | MULTD F4,F0,F2 | Exec-2 F4

4 Y | ADDD F6,F0,F0 Exec-2 F6

5 Y SUBI R1,R1,8 Execute R1

6 Y SUBI R2,R2,8 Issue R2

7

8

Table 2: Reorder buffer. The notation Exec-i means the ith stage of execution.

Field FO | F2 | F4 | F6 | F8 | F10
Reorder # 3 4
Busy NI N|Y Y

Table 3: FP Register status

(b) The tables below show the state at the end of the cycle in which the second
MULTD (the one that is commented) from the code below issued. Show the
state after two cycles.

MULTD FO, F2, F4

ADDD F6, F6, FO

ADDD F2, F2, F8

LD F4, 0(R2)

ADDI R1, R1, 8

MULTD F8, F10, F12 /*this onex/

ADDD F4, F4, F10

ADDI R2, R2, 1
Name | Busy | Op V; Vi | Q; | Qr | Dest
Add1 Y ADDD F6 | FO #2
Add2 Y ADDD F2 | F8 #3
Add3
Mult1 N MULTD F2 | F4 #1
Mult2 Y MULTD F10 | F12 #6
Intl Y LD F4,0(R2) R2 #4
Int2 Y ADDI R1,R1,8 | R1 8 #5
Int3

Table 4: Reservation Stations.

Entry | Busy | Instruction State | Destination | Value
1 Y MULTD F0,F2,F4 Write FO F2*F4
2 Y ADDD F6,F6,F0 Issue F6
3 Y ADDD F2F6,F8 Exec-2 F2
4 Y LD F4,0(R2) Execute F4
5 Y ADDI R1,R1,8 Execute R1
6 Y MULTD F8,F10,F12 Issue F8
7
8

Table 5: Reorder buffer.

Field FO | F2 | F4 | F6 | F8 | F10 | F12
Reorder # | 1 3 4 2 6
Busy Y|Y|Y|Y|Y

Table 6: FP Register status.

3. (This question continues on the next 3 pages. Each subquestion can be
answered independently of the others.)

A 32-bit processor has the memory hierarchy for data (we don’t consider instruc-
tion caches in this question) described below. It is running under an Operating
System with a virtual memory paging system. The page size is 8 KB.

e A first level cache L1, 16 KB, 2-way set-associative with a line size of 32
bytes.

e A second level cache L2, 256 KB, 4-way set-associative with a line size of
32 bytes.

e A TLB with 128 entries, 2-way set associative.

Both L1 and L2 are write-back, write-allocate caches.

(a) (4 points)
Give the format of a TLB entry.

(b) (8 points)
Is it possible to have L1 be:
1. Virtually addressed and virtually tagged
2. Virtually addressed and physically tagged
3. Physically addressed and physically tagged
Justify your answers for each of the 3 options above. Are all of these options

the same? If not, what differentiates them and what are the pros and cons of
each?

Would it be worthwhile to have L2 virtually addressed and physically tagged?
Justify your answer.

(¢) (12 points)

Assume a memory access time of 100 ns. and no contention in the memory
hierarchy. Below is a series of measurements that have been taken for the data
fetch portion (i.e., the “execute” part) of a load instruction in the processor
with the memory hierarchy described at the beginning of this question.

Give what you think is the most likely explanation of why the data fetch took
that long for each of the timings below:

e 3 s

e 18 ns

100 ns

200 ns

e 10 ms

What would you guess to be the cycle time of this processor? Justify your
answer in one or two sentences.

(d) (10 points)

The processor with the memory hierarchy described at the beginning of this
question is part of 4-processor cluster, i.e., the 4 processors form a shared-
memory multiprocessor communicating via a single shared bus. Cache coherence
at the L2 level is accomplished via a MESI (4 states) snoopy protocol. Multi-
level inclusion is enforced, i.e., a block resident in L1 has a corresponding block
resident in L2.

In addition to the tags, what other “metadata” is needed for each block of the
L1 cache and the L2 cache? You should include those bits that are needed for
both single and multiple processor environments. An example of such a bit is
the LRU bit used for replacement in the L1 cache.

What needs to be changed if L2 had a 64 bytes line instead of a 32 bytes line.

4. (20 points) (This question continues on the next page)

The (incomplete) state diagram below shows the three necessary states for a
write-invalidate cache coherence protocol and some of the state transitions.

Transitions written such as:

e “Read hit” corresponds to a CPU event that does not generate a bus
transaction.

e “Read miss///Bus read’ corresponds to a CPU event that also generates
a bus transaction.

e “Invalidate” corresponds to a transaction initiated by snooping on the bus.

Read misy///Bus read/ Clean
L

Invalidate

Write misy///Bus write

hit
Write hit

(a) (10 points)

Complete the state diagram above using he same notation. In addition, indicate
when a write-back of a block to memory is needed both in the protocol and in
case of block replacement.

10

(b) (10 points)

Assume that 3 processors with caches C1, C2, and C3 are attached to a single
shared bus and that they follow the cache coherence protocol of the previous

page.

Addresses A and B map to the same blocks in the direct-mapped caches but
they do not belong to the same block (i.e, their contents can’t both reside in
the same cache at the same time). Initially, the entries in the 3 caches, say X1,
X2 and X3 corresponding to A (and therefore B) are in state Invalid. Assume
that it takes much less than 1000 cycles to complete a miss and associated
transactions on the bus.

Show the events that occur (read miss etc.), transactions on the bus (bus read
miss etc.), the states of and the values stored in X1, X2 and X3 when the
processors execute the following instructions:

At time O, Cl reads A
At time 1000, C2 reads B
At time 2000, C3 reads B
At time 3000 C3 writes B
At time 4000, C2 writes A
At time 5000, C3 reads A

11

5. (8 points) (This question continues on the next page)
WARNING: THIS IS A DIFFICULT QUESTION

Improvement in frequency (MHz) does not always improve performance of com-
puter systems. With higher frequencies fewer operations can be performed in
a pipeline stage and pipeline depths have to increase. The figure below, taken
from a recent article in the Proceedings of the IEEE, measures the impact of
increasing the number of pipeline stages on performance using a synthetic model
of an in-order superscalar machine.

SORRY THE FIGURE WAS PASTED THERE AND IS NOT AVAIL-
ABLE ON-LINE

12

Give two reasons why performance improve less than linearly with increased
frequency.

There are 2 singular points in the graph plotting performance vs. pipeline depth,
one at pipeline depth of 13 stages and the other at pipeline depth of 23 stages.
Why do you think that these two singular points arise at these pipeline depths
(and corresponding frequencies)?

13

