
Synchron. CSE 471 Aut 01 1

Some Recent Medium-scale NUMA
Multiprocessors (research machines)

• DASH (Stanford) multiprocessor.
– “Cluster” = 4 processors on a shared-bus with a shared L2

– Directory cache coherence on a cluster basis

– Clusters (up to 16) connected through 2 2D-meshes (one for sending
messages, one for acks)

• Alewife (MIT)
– Dynamic pointer allocation directory (5 pointers)

– On “overflow” of a directory entry, software takes over

– Multithreaded. (Fast) Context-switch on a cache miss to a remote node

• FLASH (Stanford)
– Use of a programmable protocol processor. Can implement different

protocols (including message passing) depending on the application

Synchron. CSE 471 Aut 01 2

Some Recent Medium-scale NUMA
Multiprocessors (commercial machines)

• SGI Origin (follow-up on DASH)
– 2 processors/cluster

– Full directory

– Hypercube topology up to 32 processors (16 nodes)

– Then “fat hypercube” with a metarouter (up to 256 processors)
• vertices of hypercubes connected to switches in metarouter

• Sequent NUMA-Q
– SPM clusters of 4 processors + shared “remote” cache (caches

only data not homed in cluster)

– Clusters connected in a ring

– SCI cache coherence via remote caches

Synchron. CSE 471 Aut 01 3

Extending the range of SMP’s – Sun’s Starfire

• Use snooping buses (4 of them) for transmitting requests
and addresses
– One bus per each quarter of the physical address bus

• Up to 16 clusters of 4 processor/memory modules each

• Data is transmitted via a 16 x 16 cross-bar between clusters

• “Analysis” shows that up to 12 clusters, performance is
limited by the data network; after that it’s by the snooping
buses

Synchron. CSE 471 Aut 01 4

Multiprogramming and Multiprocessing
Imply Synchronization

• Locking
– Critical sections

– Mutual exclusion

– Used for exclusive access to shared resource or shared data for
some period of time

– Efficient update of a shared (work) queue

• Barriers
– Process synchronization -- All processes must reach the barrier

before any one can proceed (e.g., end of a parallel loop).

Synchron. CSE 471 Aut 01 5

Locking

• Typical use of a lock:
 while (!acquire (lock)) /*spin*/

;

/* some computation on shared data*/

release (lock)

• Acquire based on primitive: Read-Modify-Write
– Basic principle: “Atomic exchange”

– Test-and-set

– Fetch-and-add

Synchron. CSE 471 Aut 01 6

Test-and-set

• Lock is stored in a memory location that contains 0 or 1

• Test-and-set (attempt to acquire) writes a 1 and returns the
value in memory

• If the value is 0, the process gets the lock; if the value is 1
another process has the lock.

• To release, just clear (set to 0) the memory location.

Synchron. CSE 471 Aut 01 7

Atomic Exchanges

• Test-and-set is one form of atomic exchange

• Atomic-swap is a generalization of Test-and-set that allows
values besides 0 and 1

• Compare-and-swap is a further generalization: the value in
memory is not changed unless it is equal to the test value
supplied

Synchron. CSE 471 Aut 01 8

Fetch-and-

• Generic name for fetch-and-add, fetch-and-store etc.

• Can be used as test-and-set (since atomic exchange) but
more general. Will be used for barriers (see later)

• Introduced by the designers of the NYU Ultra where the
interconnection network allowed combining.
– If two fetch-and-add have the same destination, they can be

combined. However, they have to be forked on the return path

Synchron. CSE 471 Aut 01 9

Full/Empty Bits

• Based on producer-consumer paradigm
• Each memory location has a synchronization bit associated

with it
– Bit = 0 indicates the value has not been produced (empty)
– Bit = 1 indicates the value has been produced (full)

• A write stalls until the bit is empty (0). After the write the
bit is set to full (1).

• A read stalls until the bit is full and then empty it.
• Not all load/store instructions need to test the bit. Only

those needed for synchronization (special opcode)
• First implemented in HEP and now in Tera.

Synchron. CSE 471 Aut 01 10

Faking Atomicity

• Instead of atomic exchange, have an instruction pair that
can be deduced to have operated in an atomic fashion

• Load locked (ll) + Store conditional (sc) (Alpha)
– sc detects if the value of the memory location loaded by ll has been

modified. If so returns 0 (locking fails) otherwise 1 (locking
succeeds)

– Similar to atomic exchange but does nor require read-modify-write

• Implementation
– Use a special register (link register) to store the address of the

memory location addressed by ll . On context-switch, interrupt or
invalidation of block corresponding to that address (by another sc),
the register is cleared. If on sc, the addresses match, the sc
succeeds

Synchron. CSE 471 Aut 01 11

Spin Locks

• Repeatedly: try to acquire the lock

• Test-and-Set in a cache coherent environment
(invalidation-based):
– Bus utilized during the whole read-modify-write cycle

– Since test-and-set writes a location in memory, need to send an
invalidate (even if the lock is not acquired)

– In general loop to test the lock is short, so lots of bus contention

– Possibility of “exponential back-off” (like in Ethernet protocol to
avoid too many collisions)

Synchron. CSE 471 Aut 01 12

Test and Test-and-Set

• Replace “test-and-set” with “test and test-and-set”.
– Keep the test (read) local to the cache.

– First test in the cache (non atomic). If lock cannot be acquired,
repeatedly test in the cache (no bus transaction)

– On lock release (write 0 in memory location) all other cached
copies of the lock are invalidated.

– Still racing condition for acquiring a lock that has just been
released. (O(n**2) bus transactions for n contending processes).

• Can use ll+sc but still racing condition when the lock is
released

Synchron. CSE 471 Aut 01 13

Queuing Locks

• Basic idea: a queue of waiting processors is maintained in
shared-memory for each lock (best for bus-based
machines)
– Each processor performs an atomic operation to obtain a memory

location (element of an array) on which to spin

– Upon a release, the lock can be directly handed off to the next
waiting processor

Synchron. CSE 471 Aut 01 14

Software Implementation

lock struct {int Queue[P]; int Queuelast;} /*for P processors*/

ACQUIRE myplace := fetch-and-add (lock->Queuelast);

 while (lock->Queue[myplace modP] = = 1; /* spin*/

 lock->Queue[myplace modP] := 1;

RELEASE lock->Queue[myplace + 1 modP] := 0;

– The Release should invalidate the cached value in the next
processor that can then fetch the new value stored in the array.

Synchron. CSE 471 Aut 01 15

Queuing Locks (hardware implementation)

• Can be done several ways via directory controllers

• Associate a syncbit (aka, full/empty bit) with each block in
memory (a single lock will be in that block)
– Test-and-set the syncbit for acquiring the lock

– Unset to release

– Special operation (QOLB) non-blocking operation that enqueues
the processor for that lock if not already in the queue. Can be done
in advance, like a prefetch operation.

• Have to be careful if process is context-switched
(possibility of deadlocks)

Synchron. CSE 471 Aut 01 16

Barriers

• All processes have to wait at a synchronization point
– End of parallel do loops

• Processes don’t progress until they all reach the barrier
• Low-performance implementation: use a counter

initialized with the number of processes
– When a process reaches the barrier, it decrements the counter

(atomically -- fetch-and-add (-1)) and busy waits
– When the counter is zero, all processes are allowed to progress

(broadcast)

• Lots of possible optimizations (tree, butterfly etc.)
– Is it important? Barriers do not occur that often (Amdahl’s law….)

