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Some Recent Medium-scale NUMA
Multiprocessors (research machines)

• DASH (Stanford) multiprocessor.
– “Cluster” =  4 processors on a shared-bus with a shared L2

– Directory cache coherence on a cluster basis

– Clusters (up to 16) connected through 2 2D-meshes (one for sending
messages, one for acks)

• Alewife (MIT)
– Dynamic pointer allocation directory (5 pointers)

– On “overflow” of a directory entry, software takes over

– Multithreaded. (Fast) Context-switch on a cache miss to a remote node

• FLASH (Stanford)
– Use of a programmable protocol processor. Can implement different

protocols (including message passing) depending on the application
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Some Recent Medium-scale NUMA
Multiprocessors (commercial machines)

• SGI Origin (follow-up on DASH)
– 2 processors/cluster

– Full directory

– Hypercube topology up to 32 processors (16 nodes)

– Then “fat hypercube” with a metarouter (up to 256 processors)
• vertices of hypercubes connected to switches in metarouter

• Sequent NUMA-Q
– SPM clusters of 4 processors + shared “remote” cache (caches

only data not homed in cluster)

– Clusters connected in a ring

– SCI cache coherence via remote caches
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Extending the range of SMP’s – Sun’s Starfire

• Use snooping buses (4 of them) for transmitting requests
and addresses
– One bus per each quarter of the physical address bus

• Up to 16 clusters of 4 processor/memory modules each

• Data is transmitted via a 16 x 16 cross-bar between clusters

• “Analysis” shows that up to 12 clusters, performance is
limited by the data network; after that it’s by the snooping
buses
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Multiprogramming and Multiprocessing
Imply Synchronization

• Locking
– Critical sections

– Mutual exclusion

– Used for exclusive access to shared resource or shared data for
some period of time

– Efficient update of a shared (work) queue

• Barriers
– Process synchronization -- All processes must reach the barrier

before any one can proceed (e.g., end of a parallel loop).
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Locking

• Typical use of a lock:
  while (!acquire (lock))    /*spin*/

;

/* some computation on shared data*/

release (lock)

• Acquire based on primitive: Read-Modify-Write
– Basic principle: “Atomic exchange”

– Test-and-set

– Fetch-and-add
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Test-and-set

• Lock is  stored in a memory location that contains 0 or 1

• Test-and-set (attempt to acquire) writes a 1 and returns the
value in memory

• If the value is 0, the process gets the lock; if the value is 1
another process has the lock.

• To release, just clear (set to 0) the memory location.
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Atomic Exchanges

• Test-and-set is one form of atomic exchange

• Atomic-swap is a generalization of Test-and-set that allows
values besides 0 and 1

• Compare-and-swap is a further generalization: the value in
memory is not changed unless it is equal to the test value
supplied
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Fetch-and-

• Generic name for fetch-and-add, fetch-and-store etc.

• Can be used as test-and-set (since atomic exchange) but
more general. Will be used for barriers (see later)

• Introduced by the designers of the NYU Ultra where the
interconnection network allowed combining.
– If two fetch-and-add have the same destination, they can be

combined. However, they have to be forked on the return path
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Full/Empty Bits

• Based on producer-consumer paradigm
• Each memory location has a synchronization bit associated

with it
– Bit = 0 indicates the value has not been produced (empty)
– Bit = 1 indicates the value has  been produced (full)

• A write stalls until the bit is empty (0). After the write the
bit is set to full (1).

• A read stalls until the bit is full and then empty it.
• Not all load/store instructions need to test the bit. Only

those needed for synchronization (special opcode)
• First implemented in HEP and now in Tera.
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Faking Atomicity

• Instead of atomic exchange, have an instruction pair that
can be deduced to have operated in an atomic fashion

• Load locked (ll) + Store conditional (sc) (Alpha)
– sc detects if the value of the memory location loaded by ll has been

modified. If so returns 0 (locking fails) otherwise 1 (locking
succeeds)

– Similar to atomic exchange but does nor require read-modify-write

• Implementation
– Use a special register (link register)  to store the address of the

memory location addressed by ll . On context-switch, interrupt or
invalidation of block corresponding to that address (by another sc),
the register is cleared. If on sc, the addresses match, the sc
succeeds
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Spin Locks

• Repeatedly: try to acquire the lock

• Test-and-Set in a cache coherent environment
(invalidation-based):
– Bus utilized during the whole read-modify-write cycle

– Since test-and-set writes a location in memory, need to send an
invalidate (even if the lock is not acquired)

– In general loop to test the lock is short, so lots of bus contention

– Possibility of  “exponential back-off” (like in Ethernet protocol to
avoid too many collisions)
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Test and Test-and-Set

• Replace “test-and-set” with “test and test-and-set”.
– Keep the test (read) local to the cache.

– First test in the cache (non atomic). If lock cannot be acquired,
repeatedly test in the cache (no bus transaction)

– On lock release (write 0 in memory location) all other cached
copies of the lock are invalidated.

– Still racing condition for acquiring a lock that has just been
released. (O(n**2)  bus transactions for n contending processes).

• Can use ll+sc but  still racing condition when the lock is
released
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Queuing Locks

• Basic idea: a queue of waiting processors is maintained in
shared-memory for each lock (best for bus-based
machines)
– Each processor performs an atomic operation to obtain a memory

location (element of an array) on which to spin

– Upon a release, the lock can be directly handed off to the next
waiting processor
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Software Implementation

lock struct {int Queue[P]; int Queuelast;} /*for P processors*/

ACQUIRE myplace := fetch-and-add (lock->Queuelast);

                      while (lock->Queue[myplace modP] = = 1; /* spin*/

                      lock->Queue[myplace modP] :=  1;

RELEASE lock->Queue[myplace + 1 modP] :=  0;

– The Release should invalidate the cached value in the next
processor that can then fetch the new value stored in the array.
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Queuing Locks (hardware implementation)

• Can be done several ways via directory controllers

• Associate a syncbit (aka, full/empty bit) with each block in
memory ( a single lock will be in that block)
– Test-and-set the syncbit for acquiring the lock

– Unset to release

– Special operation (QOLB) non-blocking operation that enqueues
the processor for that lock if not already in the queue. Can be done
in advance, like a prefetch operation.

• Have to be careful if process is context-switched
(possibility of deadlocks)
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Barriers

• All processes have to wait at a synchronization point
– End of parallel do loops

• Processes don’t progress until they all  reach the barrier
• Low-performance implementation: use a  counter

initialized with the number of processes
– When a process reaches the barrier, it decrements the counter

(atomically -- fetch-and-add (-1)) and busy waits
– When the counter is zero, all processes are allowed to progress

(broadcast)

• Lots of possible optimizations (tree, butterfly etc. )
– Is it important? Barriers do not occur that often (Amdahl’s law….)


