
Cache Coh. CSE 471 Aut 01 1

Cache Coherence (controllers snoop on bus
transactions)

P1 P2 P3 P4

Mem.

Initial state: P2 reads A; P3 reads A

A

A A

Cache Coh. CSE 471 Aut 01 2

Cache coherence (cont’d)

• Now P2 wants to write A

• Two choices:
– Broadcast the new value of A on the bus; value of A snooped by

cache of P3: Write-update (or write broadcast) protocol (resembles
write-through)

– Broadcast an invalidation message with the address of A; the
address snooped by cache of P3 which invalidates its copy of A:
Write-invalidate protocols. Note that the copy in memory is not
up-to-date any longer (resembles write-back)

• If instead of P2 wanting to write A, we had a write miss in
P4 for A, the same two choices of protocol apply.

Cache Coh. CSE 471 Aut 01 3

Write-update
P2 and P3 have read line A; P4 has a write miss on an element of line A

P1 P2 P3 P4

Mem.

A’

A’ A’ A’

Cache Coh. CSE 471 Aut 01 4

Write-invalidate
 P2 and P3 have read line A; P4 has a write miss on an element of line A

P1 P2 P3 P4

Mem.

Invalid lines

A

A A A’

Cache Coh. CSE 471 Aut 01 5

Snoopy Cache Coherence Protocols

• Associate states with each cache block; for example:
– Invalid

– Clean (one or more copies are up to date)

– Dirty (modified; exists in only one cache)

• Fourth state (and sometimes more) for performance
purposes

Cache Coh. CSE 471 Aut 01 6

State Transitions for a Given Cache Block

• Those incurred as answers to processor associated with the
cache
– Read miss, write miss, write on clean block

• Those incurred by snooping on the bus as result of other
processor actions, e.g.,
– Read miss by Q might make P’s block transit from dirty to clean

– Write miss by Q might make P’s block transit from dirty/clean to
invalid (write invalidate protocol)

Cache Coh. CSE 471 Aut 01 7

Basic Write-invalidate Protocol (write-back
write-allocate caches)

• Needs 3 states associated with each cache block
– Invalid

– Clean (read only – can be shared) – also called Shared

– Dirty (only valid copy in the system) – also called Modified

• Need to decompose state transitions into those:
– Induced by the processor attached to the cache

– Induced by snooping on the bus

Cache Coh. CSE 471 Aut 01 8

Basic 3 State Protocol: Processor Actions

Inv.

Dirty

Clean

Read miss (data might
come from mem. or from
another cache)

Write miss (data might
come from mem. or from
another cache)

Read miss

Write miss

Transitions from
Invalid state won’t

be shown in
forthcoming figures

Read hit

Read/write
hit

Write hit (will also send
a transaction on bus)

Read miss and Write miss
will send corresponding
transactions on the bus

Cache Coh. CSE 471 Aut 01 9

Basic 3 State Protocol: Transitions from Bus
Snooping

Inv.

Dirty

CleanBus write

Bus write
Bus read

Cache Coh. CSE 471 Aut 01 10

An Example of Write-invalidate Protocol: the
Illinois Protocol

• States:
– Invalid (aka Invalid)

– Valid-Exclusive (clean, only copy, aka Exclusive)

– Shared (clean, possibly other copies, aka Shared)

– Dirty (modified, only copy, aka Modified)

– In the MOESI notation, a MESI protocol
• O stands for ownership

Cache Coh. CSE 471 Aut 01 11

Illinois Protocol: Design Decisions

• The Valid-Exclusive state is there to enhance performance
– On a write to a block in V-E state, no need to send an invalidation

message (occurs often for private variables).

• On a read miss with no cache having the block in dirty
state
– Who sends the data: memory or cache (if any)?

• Answer: cache for that particular protocol; other protocols
might use the memory

– If more than one cache, which one?

• Answer: the first to grab the bus (tri-state devices)

Cache Coh. CSE 471 Aut 01 12

Illinois Protocol: State Diagram

Inv. V.E.

Sh.Dirty

Read miss from mem.

Write hit

Write miss

Read hit

Read/Write
Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

Cache Coh. CSE 471 Aut 01 13

Example: P2 reads A (A only in memory)

Inv. V.E.

Sh.Dirty

Read miss from mem.

Write hit

Write miss

Read hit

Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

Cache Coh. CSE 471 Aut 01 14

Example: P3 reads A (A comes from P2)

Inv. V.E.

Sh.Dirty

Read miss from mem.

Write hit

Write miss

Read hit

Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

Both P2 and P3
will have A in

state Sh

Cache Coh. CSE 471 Aut 01 15

Example: P4 writes A (A comes from P2)

Inv. V.E.

Sh.Dirty

Read miss from mem.

Write hit

Write miss

Read hit

Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

P2 and P3 will
have A in state
Inv; P4 will be
in state Dirty

Cache Coh. CSE 471 Aut 01 16

Cache Parameters for Multiprocessors

• In addition to the 3 C’s types of misses, add a 4th C:
coherence misses

• As cache sizes increase, the misses due to the 3 C’s
decrease but coherence misses increase

• Shared data has been shown to have less spatial locality
than private data; hence large block sizes could be
detrimental

• Large block sizes induce more false sharing
– P1 writes the first part of line A; P2 writes the second part. From

the coherence protocol viewpoint, both look like “write A”

Cache Coh. CSE 471 Aut 01 17

Performance of Snoopy Protocols

• Protocol performance depends on the length of a write run

• Write run: sequence of write references by 1 processor to a
shared address (or shared block) uninterrupted by either
access by another processor or replacement
– Long write runs better to have write invalidate

– Short write runs better to have write update

• There have been proposals to make the choice between
protocols at run time
– Competitive algorithms

Cache Coh. CSE 471 Aut 01 18

What About Cache Hierarchies?

• Implement snoopy protocol at L2 (board-level) cache

• Impose multilevel inclusion property
– Encode in L2 whether the block (or part of it if blocks in L2 are

longer than blocks in L1) is in L1 (1 bit/block or subblock)

– Disrupt L1 on bus transactions from other processors only if data is
there, i.e., L2 shields L1 from unnecessary checks

– Total inclusion might be expensive (need for large associativity) if
several L1’s share a common L2 (like in clusters). Instead use
partial inclusion (i.e., possibility of slightly over invalidating L1)

